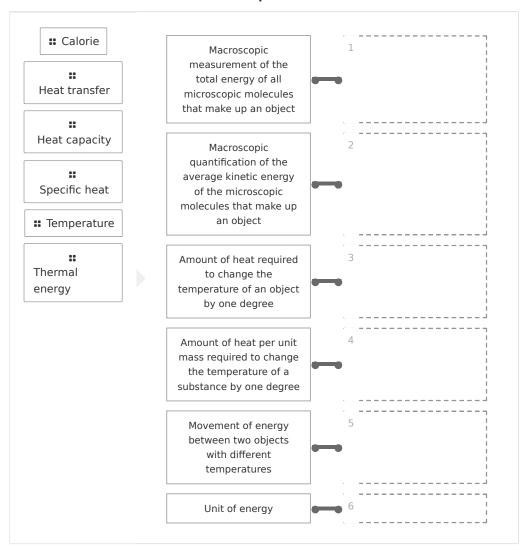
SI Physics - Full Discipline Demo

Specific Heat of Solids

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- Thermal energy Temperature 3 Heat capacity Specific heat
- 6 Calorie Heat transfer

Categorize each statement as true or false.

A calorimeter creates a system isolated from the surrounding environment.

Placing a pot of water over a fire transfers heat to the water

::

The addition of heat energy to a system always increases the temperature of the system.

::

Thermal energy transfer between two objects in thermal contact can be from hot to cold or cold to hot.

:: Two objects in thermal equilibrium have the same temperature.

** A bike pump transfers heat to the air inside a bicycle tire.

True	False
I 1	2
1 ¹	Δ
1	1
T I	I I
<u> </u>	

Correct answers:

A calorimeter creates a system isolated from the surrounding environment.

Placing a pot of water over a fire transfers heat to the water

Two objects in thermal equilibrium have the same temperature.

2

The addition of heat energy to a system always increases the temperature of the system.

Thermal energy transfer between two objects in thermal contact can be from hot to cold or cold to hot.

A bike pump transfers heat to the air inside a bicycle tire.

Exploration

The SI units of heat are	
calories	
o joules	~
○ kelvin	
 All of the above 	
The specific heat capacity of an object depends only on the substance for which the object is made.	rom
○ True	~
- False	
A substance with high specific heat warms up or cools down more quick than a substance with low specific heat.	ly
○ True	
○ False	~
Placing a pot of water over a fire transfers to the water.	
• heat	~
work	
temperature	
All of the above	
The exchange of energy between two objects in thermal contact is alwa from	ys
o cold to hot	
hot to cold	~
larger to smaller	
None of the above	

D	uring a phase change, the temperature of a system	
	○ increases	
	decreases	
	o remains constant	✓
	None of the above	
	side a calorimeter, the total change in energy before and after a reacti	on
	o positive	
1	negativezero	~
ı	All of the above	•
	is the measurement of the heat transfer between systems.	
	 Thermodynamics 	
	Calorimetry	✓
	Thermal equilibrium	
	None of the above	
	were your experimental results to the theoretical values? What experintributed to the error between experimental and theoretical measurem	

The experimental results are relatively close to the theoretical values. Due to the hole at the top of the calorimeter, as well as any open gaps where the lid meets the base, the calorimeter is not an entirely-closed system. Further, the calorimeter isn't perfectly insulated. All of these can result in the system losing heat, affecting the measurement of temperature change. A slight misreading of the thermometer can change the specific heat capacity calculation significantly. There is also the possibility of losing a small amount of water mass after measuring the temperature of the water in

the calorimeter (because some water may have stuck to the thermometer). Another source of error could be the water not being at room temperature at the beginning of the experiment.

What would be the overall outcome of starting the procedures with cold water instead of room temperature water?					
durir woul	ng the experiment	The time b impacting th	ture, the water would conting between temperature reading the measurement of tempera ity.	g and introduction of the ho	t metal
			alories, given off from a 5 neat capacity of aluminum		
$\Delta T = 3$ Q=5 The	is defined as: Q= 20°- 80°C = -60°C g*0.215 cal/g•°C ^o amount of heat giverial.)	: *(-60°C) = -	64.5 cal 1.5 cal. (The negative sign in	dicates the heat leaves the	
heate	d to a temperatu	ure of 100 °	ore severe burn if equal m °C: the one with the highen acity? Explain your answer	r specific heat capacity or	the one
Since	e mass and tempe	erature chan	would cause a more severe b nge are the same, the materi o the region it touches, causi	al with the higher specific h	
(CAMD	Data Table 1: Ma	ass and Tem	perature Measurements		
Trial	Material	Mass (g)	Initial Temperature (°C)	Final Temperature (°C)	ΔT (°C)

1	Water	74.91	19.0	22.0	3.0
	Steel washers	29.66	90.0		-68.0
<u> </u>	Water	75.25	19.0	24.0	5.0
2	Brass ball	71.24	88.0	24.0	-64.0

Data Table 2: Specific Heat Capacities (SAMPLE ANSWER BELOW)

Material	Specific Heat Capacity c (cal/g•°C)	Material's Specific Heat Capacity (cal/g•°C)	Percent Uncertainty (%)
Steel	0.111	0.122	8.67
Brass	0.083	0.091	9.32

Competency Review

is a measurement of the average kinetic energy of the microscop particles that make up an object.	oic
Heat	
 Temperature 	~
Thermal energy	
 All of the above 	
is a measurement of the total energy of microscopic particles the make up an object.	at
Heat	
 Temperature 	
Thermal energy	✓
All of the above	
The specific heat capacity is the amount of heat required to raise the temperature of of a substance by one degree.	
one gram	~
the total mass	
ten kilograms	
None of the above	

equilibrium is the final state of two objects in the each other.	nermal contact with
solid	
thermal	✓
○ heat	
None of the above	
During a phase change, the temperature of a substan	nce remains constant.
│ ○ True	~
False	
The mass of the water in a calorimeter is not necessal calculations. True False	ry for calorimetry ✓
Calculations. True	↓ ture of a 100 g block
calculations. True False cal of heat are required to increase the temperar	√ ture of a 100 g block
calculations. True False cal of heat are required to increase the temperar of lead by 5.00 °C. The specific heat of lead is 0.0305	ture of a 100 g block 5 cal/g•°C.
calculations. True False cal of heat are required to increase the temperar of lead by 5.00 °C. The specific heat of lead is 0.0305	ture of a 100 g block cal/g•°C.

Styrofoam is a recommended material to use when constructing a calorimeter because it is a good	
conductor	
○ diffuser	
○ insulator	✓
 None of the above 	
42 cal of heat are required to increase the temperature of a 30 g piece of an unknown substance from 20 to 27 °C and the specific heat capacity of the substance is cal/g deg•°C.	
O.5	
○ 0.2	~
○ 0.8	
 None of the above 	
The experimental value of the specific heat capacity of a metal may be different than the theoretical value because of the environment.	
• heat loss to	~
o work done by	
work done bythe humidity of	

Extension Questions

Explain why water, with its high specific heat capacity, is utilized for heating systems such as hot-water radiators. (SAMPLE ANSWER BELOW)

Water's high specific heat capacity means that a small mass of water is needed to transfer the same amount of heat. Water is also relatively dense, so only a small volume of water is required to contain that mass.

A heated fruit pie often seems to have filling that is warmer than the crust. Why is this? What can you conclude about the specific heat of the filling and the crust? (SAMPLE ANSWER BELOW)

The warmer filling has a higher specific heat than the cooler crust. The filling releases more heat energy as it cools down than crust, so it is more likely to feel warmer than the crust when both are actually the same temperature.

SCIENCE INTERACTIVE eScience Labs & Hends-On Labs	Copyright 2025 - Science Interactive https://scienceinteractive.com