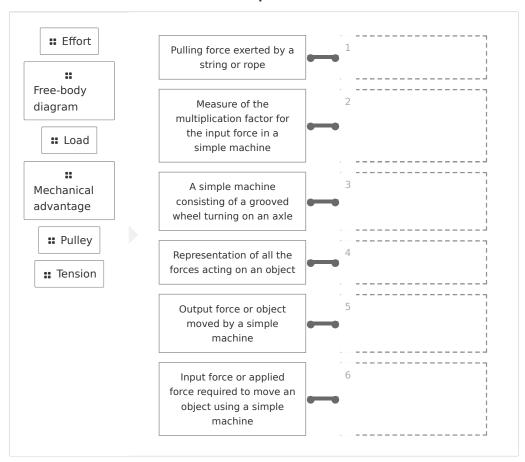
SI Physics - Full Discipline Demo

Pulleys - Digital

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Tension 2 Mechanical advantage 3 Pulley 4 Free-body diagram
- 5 Load 6 Effort

Identify each statement as true or false.

::

A pulley system with a mechanical advantage of 2 reduces the amount of energy required to move an object to half the nominal energy.

**

The efficiency of a simple machine is the ratio of the actual mechanical advantage to the theoretical mechanical advantage.

The reduction in tension in pulley systems is called mechanical advantage.

::

The theoretical mechanical advantage is always less than the actual mechanical advantage.

::

The work put into a simple machine must equal the work done by the simple machine.

True False
<u> </u>

Correct answers:

1

The efficiency of a simple machine is the ratio of the actual mechanical advantage to the theoretical mechanical advantage.

The work put into a simple machine must equal the work done by the simple machine.

The reduction in tension in pulley systems is called mechanical advantage.

2

A pulley system with a mechanical advantage of 2 reduces the amount of energy required to move an object to half the nominal energy.

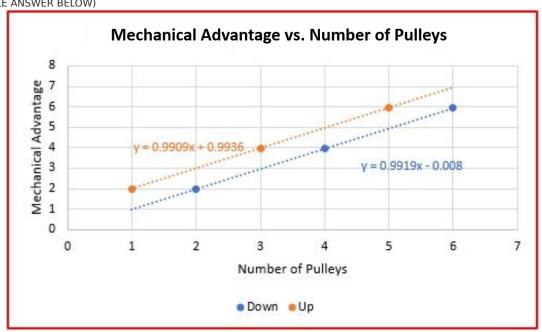
The theoretical mechanical advantage is always less than the actual mechanical advantage.

Exploration

A combination of fixed and movable pulleys is called a pulley syst	em.
combo	
compound	✓
• mixed	
None of the above	
Multiple pulleys used together in a system can be used to change the of the applied force.	
magnitude	
direction	
direction and magnitude	~
 None of the above 	
The tension of a massless string is the pulling force exerted on or end of the string.	ne
equal to	✓
greater than	
less than	
 All of the above 	
In a free-body diagram, all the forces acting on an object start with the head on the dot that represents the object.	eir
True	
False	~

positive	
negative	
zero	~
None of the above	
the applied force in a pulley system is equal to the for a non-ccelerating system.	
weight	
tension	~
mass	
 None of the above 	
he mechanical advantage is defined as the ratio of	
 output force to input force 	~
 input force to output force 	
 input force to applied force 	
 None of the above 	
he output force corresponds to the load.	
True	~
○ False	
The theoretical mechanical advantage is equal to the number of	-
pulleys	
string segments	~
effort forces	

Work is defined as the force multiplied by the
○ time
mass
None of the above
For a machine with a mechanical advantage greater than one, the distance over which the input force acts is the distance over which the output force acts.
○ larger than
smaller than
equal to
 None of the above
Exercise $f 1$ How does addition of pulleys into a system affect the MA? Is it a linear change? Does the direction of applied force matter? Reference Graph 1 in your answer.
The MA increases linearly with increasing number of pulleys, but the direction in which the force i applied factors in. As can be seen in Graph 1 , the MA has a linear relationship with pulley number MA=n+1 (n=number of pulleys) for an upward applied force and MA=n for a downward applied force.
How would the mechanical advantage change on a different planet with a different gravitational force? Explain your answer.



The mechanical advantage would remain the same. This is because the MA is determined by the number of pulleys. The number of pulleys affects the effective amount of strings pulling upward on the mass. Though the necessary applied force necessary to lift would change on a different planet, the gravitational (weight) force of the object would change by the same factor. This makes the MA independent of the gravitational force on the planet.

Data Table 1: Pulley Simulation (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BLLO	vv)		
Mass (g)	1000	Weight F _{out} (N)	9.81
Number of Pulleys	Magnitude of Effort Force F _{in} (N)	Direction of Force	Mechanical Advantage
6	1.65	D	5.95
5	1.65	U	5.95
4	2.48	D	3.96
3	2.47	U	3.97
2	4.96	D	1.98
1	4.95	U	1.98

Graph 1: Number of Pulleys vs. Mechanical Advantage (SAMPLE ANSWER BELOW)

Competency Review

A pulley is one that moves during the operation of the pulley system	n.
single	
fixed	
o movable	✓
None of the above	
A benefit obtained by using a pulley system is called a mechanical	
o newton	
o interval	
 advantage 	✓
All of the above	

increases, the effort needed to move the load
○ decreases ✓
increases
 remains constant
 All of the above
The efficiency of a pulley system is a measure of how similar to an ideal system it is.
○ True
○ False
The work put into an ideal simple machine must be the work done by the machine.
greater than
less than
● equal to
 None of the above
As more pulleys are added to a system of pulleys, the efficiency of the system
○ decreases ✓
increases
 remains constant
None of the above

increases exponentially	
decreases linearly	
o increases linearly	•
O None of the above	
	ge of 3 lifts a load of 11 N using
	ge of 3 lifts a load of 11 N using
	ge of 3 lifts a load of 11 N using
n effort of N.	

Extension Questions

Is it possible to increase the efficiency of a pulley system without affecting the mechanical advantage of the system? If so, describe how, and if not, explain why not. (SAMPLE ANSWER BELOW)

Yes, it is possible to increase the efficiency of a pulley system without affecting the mechanical advantage of the system. The mechanical advantage depends on the number of pulleys supporting the load, or the number of strings supporting the load, so this number must remain constant, but there could be extra pulleys changing the direction of the effort force, which could be removed, and which would increase the efficiency by decreasing the friction in the system. Additionally, the pulleys in the system could be exchanged for ones with less friction, increasing the efficiency of the system.