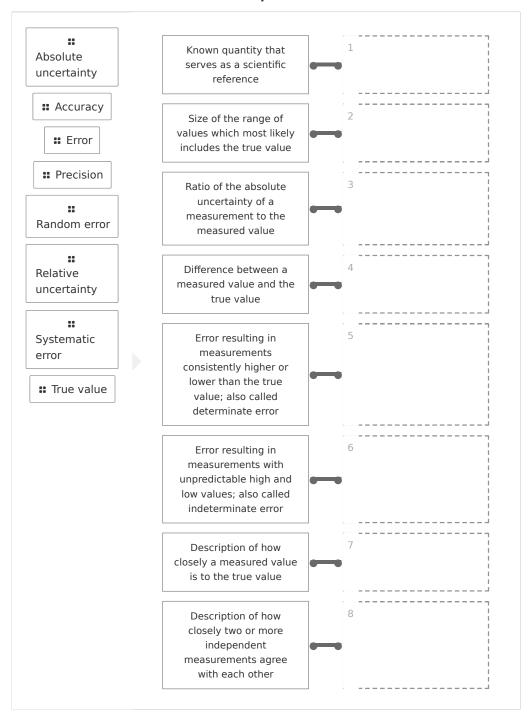
SI Physics - Full Discipline Demo

Propagation of Uncertainty

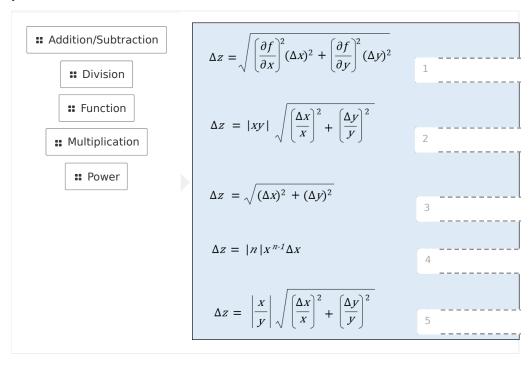
Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.



Correct answers:

- 1 True value 2 Absolute uncertainty 3 Relative uncertainty 4 Error
- 5 Systematic error 6 Random error 7 Accuracy 8 Precision

When uncertainties from multiple variables are combined, the accumulating error can be calculated using the following equations. Determine whether each equation for uncertainty applies to measurements derived through addition/subtraction, multiplication, division, or application of powers (exponents). Symbols in the figure represent measurements (x, y), uncertainty (Ax, Ay), results/unknowns (z), and powers (n).

Correct answers:

- 1 Function 2 Multiplication 3 Addition/Subtraction 4 Power
- 5 Division

Exploration

The size of the range of values in which the true value of the measurement probably lies is called the ____.

absolute uncertainty

error

accuracy

All of the above

Propagation of uncertainty is the ____.

- the exact value that exists in nature
- the size of the range of values in which the true value of the measurement probably lies
- the ratio of the absolute uncertainty of a measurement to the best estimate
- the mathematical technique to address uncertainty in results produced from errors in initial measurements

For experiments with multiple measurements, the uncertainty of each measurement can simply be added to find the total uncertainty.

- True
- False

When two measurements are added together, uncertainty is calculated with the equation ____.

$$\Delta z = (\Delta x)(\Delta y)$$

$$egin{array}{l} egin{array}{l} \Delta z = \sqrt{(\Delta x)^2 - (\Delta y)^2} \end{array}$$

$$igotimes \Delta z = |xy| \, \sqrt{\left(rac{\Delta x}{x}
ight)^2 + \left(rac{\Delta y}{y}
ight)^2}$$

When two measurements are multiplied, uncertainty is calculated with the equation ____.

$$\bigcirc \Delta z = \sqrt{(\Delta x^2) - (\Delta y^2)}$$

$$igwedge \Delta z = |xy| \, \sqrt{\left(rac{\Delta x}{x}
ight)^2 + \left(rac{\Delta y}{y}
ight)^2}$$

$$egin{aligned} igtriangledown \Delta z = \left|rac{x}{y}
ight| \sqrt{\left(rac{\Delta x}{x}
ight)^2 \,+\, \left(rac{\Delta y}{y}
ight)^2} \end{aligned}$$

$$\Delta z = |n| \ x^{n-1} \ \Delta x$$

When two measurements are divided, uncertainty is calculated with the equation ____.

$$\bigcirc \; \Delta z = \sqrt{(\Delta x^2) - (\Delta y^2)}$$

$$\bigcirc \ \Delta z = |xy| \ \sqrt{\left(rac{\Delta x}{x}
ight)^2 + \left(rac{\Delta y}{y}
ight)^2}$$

$$oxed{ } egin{aligned} oxed{ } \Delta z = \left| rac{x}{y}
ight| \sqrt{\left(rac{\Delta x}{x}
ight)^2 \, + \, \left(rac{\Delta y}{y}
ight)^2 } \end{aligned}$$

$$_{\bigcirc}$$
 $\Delta z = |n| \; x^{n-1} \; \Delta x$

Exercise 1

Describe the similarities and differences between absolute uncertainty and relative uncertainty.

Both measure expected variability around a true value. Absolute uncertainty is an integer describing a range of values, while relative uncertainty is a ratio comparing absolute uncertainty to the estimated value of the measurement.

Data Table 1: Calculated Results

(SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)			
Problem	Result (Ex: 10.5 ± 0.2 L)		
Problem 1: Find the perimeter of the fence, $P_{\rm m}$.	$20.83\pm0.20~m$		
Problem 2: Find the perimeter of the shed, $P_{\rm m}$.	$28\pm 1~ft$		
Problem 3: Find the sum of masses, m_{m} .	$270\pm20~kg$		
Problem 4: Find the area of the basketball court, $A_{\rm m}$.	$4704\pm94~ft^2$		
Problem 5: Find the speed of the bowling ball, $s_{\rm m}$.	$7.62\pm0.35~rac{m}{s}$		
Problem 6: Find the volume of the sugar cube, $V_{\rm m}$.	$4.93 \pm 2.09~cm^3$		
Problem 7: Find the area of the triangle, $A_{\rm m}$.	$72000 \pm 4400~m^2$		
Problem 8: Find the force of gravitational attraction, $F_{\rm m}$.	$1.79~x~10^{-13}\pm 1.14~x~10^{-13}~N$		
Problem 9: Find the volume of an ellipsoid, $V_{\rm m}$.	$4200\pm400~cm^3$		

Photo 1: Calculations for Problem 1 (SAMPLE ANSWER BELOW) $P = 1, +1_2 + \omega, + \omega_2$ P = 4.57m + 6.24m + 4.24m + 5.78mP = 20.83 M $\Delta P = \sqrt{(0.10 \text{ m})^2 + (0.10 \text{ m})^2 + (0.10 \text{ m})^2 + (0.10 \text{ m})^2}$ 1P= 0.20m Pm = 20.83 + 0.20 m (Jane Student Febro) Typesetting math: 100%

Photo 2: Calculations for Problem 2 (SAMPLE ANSWER BELOW) P=1,+12+w,+W2 P= 10.09+ + 5.09+ + 5.09+ + 8.09+ P = 28.0 St $\Delta P = \sqrt{(0.554)^2 + (0.554)^2 + (0.554)^2 + (0.554)^2}$ AP = 15+ Pm = 28 = 1 ft (Jane Student Feb 10) Typesetting math: 100%

Photo 3: Calculations for Problem 3

(SAMPLE ANSWER BELOW) $M = m_1 + m_2 + m_3$ M = 210 kg + 28 kg + 33 kg M = 270 kg $\Delta M = \sqrt{(15 \text{ kg})^2 + (5 \text{ kg})^2 + (6 \text{ kg})^2}$ $\Delta M = 20 \text{ kg}$ $M = 270 \pm 20 \text{ kg}$ (Same Student Feb 10)

Photo 4: Calculations for Problem 4 (SAMPLE ANSWER BELOW)

ANSWER BEL	
	A=1×w
	A = (94.07 ft) (50.019t)
	A = 4704 8+2
	$\Delta A = 1 (94.0751)(50.0151) 1 (0.8851)^2 + (0.8851)^2 + (50.0151)^2$
	AA = 94 ft2
	Am = 4704 ± 94 St2
	(Jane Student Feb 10)

Photo 5: Calculations for Problem 5

(SAMPLE ANSWER BELOW)

$$5 = \frac{1}{18.288} \text{ m} / 2.405$$
 $5 = 7.62 \text{ m/s}$

$$\Delta S = \left| \frac{18.288 \text{ m}}{2.405} \right| \sqrt{\frac{0.330 \text{ m}}{18.288 \text{ m}}^2 + \frac{0.105}{2.405}^2}$$

$$\Delta S = 0.35 \text{ m/s}$$

$$S_m = 7.62 \pm 0.35 \text{ m/s}$$
(Jane Student Feb 10)

Photo 6: Calculations for Problem 6

(SAMPLE ANSWER BELOW)

$V = l^3$
$V = (1.702 \text{ cm})^3$
V= 4.930 cm ³
AV = 131 (1.702 cm)3-1 (0.240 cm)
$\Delta V = 2.09 \text{ cm}^3$
Vm = 4.93 ± 2.09 cm ³

Photo 7: Calculations for Problem 7 (SAMPLE ANSWER BELOW)

 $A = \frac{1}{2}bh$ $A = \frac{1}{2}(260m)(555m)$ A = 72000m $\frac{\partial f}{\partial h} = \frac{1}{2}b$ $\frac{\partial f}{\partial b} = \frac{1}{2}h$ $AA = \int \frac{(1/2)h^2(Ab)^2 + ((1/2)b)^2(Ah)^2}{(AA)^2}$ $AA = \int \frac{(1/2)555m}^2(15m)^2 + ((1/2)260m)^2(12m)^2}{AA = 4400m^2}$ $Am = 72000 \pm 4400m^2$

Photo 8: Calculations for Problem 8 (SAMPLE ANSWER BELOW)

<u>.E ANSWER BELOW</u>	v)
	F = Gm, m2/R2
	F = (6.67 × 10-11 Nm2/kg2)(0.342 kg)(0.816 kg)
	(10.20m)2
	F = 1,74 × 10-13 N
	1 1 pd 1 10
	2f/2m = 6m2/R2
	2f/2m2 = Gm./B2
	2f 2B = -2 Gm, m2/B3
	0708
	$\Delta F = G \int \left(\frac{m_2}{R^2}\right)^2 (\Delta m_1)^2 + \left(\frac{m_1}{R^2}\right)^2 (\Delta m_2)^2 + \left(\frac{-2m_1 m_2}{R^3}\right)^2 (\Delta R)^2$
	AF=G (0.816kg)2 (0.100kg)2+ (0.342kg)2 (0.420kg)2+
	(10.20 m)3 (1.21 m)2
	ΔF = (6.67 × 10" Nm²/kg²)(1,71 × 10-3 kg²/m²)
	AF = 1.14 × 10-13 N
	Fm = 1.74 × 10-13 + 1.14 × 10-13 N
	(Jane Student Feb 10)

Photo 9: Calculations for Problem 9 (SAMPLE ANSWER BELOW)

ANSWER BELOW)	
	V= 4/3 17 abc
	V=4/37 (12.0cm)(8.5cm)(9.8cm)
	V= 4200 cm3
	∂V/∂a = 4/3 xbc
	2 V / 2 b = 4/3 x ac
	2 1/2c = 4/3 1/ab
ΔV = √(4/3π · 8 ΔV = √(4/3π · 8	$(4)^{2} + (2)^{2} (4)^{2} + (2)^{2} (4)^{2} + (4)^{2} $

Competency Review

Absolute uncertainty is	
exact value that exists in nature	
size of the range of values in which the true value of the measurement probably lies	~
 ratio of the absolute uncertainty of a measurement to the best estimate 	
mathematical technique to address errors in each initial measurement that produce uncertainty in the result	
The "true value" is the exact value that exists in nature.	
□ True	~
False	•
• raise	
The mathematical technique used to address uncertainty in results produced from errors in initial measurements is called	
 absolute uncertainty 	
 relative uncertainty 	
 propagation of uncertainty 	✓
 All of the above 	

When a final measurement is calculated using the equation $z=\frac{x}{y}$, the appropriate uncertainty equation shown in the figure is ____.

$$\Delta z = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

$$\Delta z = |xy| \sqrt{\left(\frac{\Delta x}{X}\right)^2 + \left(\frac{\Delta y}{y}\right)^2}$$

$$\Delta Z = \left| \frac{X}{y} \right| \sqrt{\left(\frac{\Delta X}{X} \right)^2 + \left(\frac{\Delta y}{y} \right)^2}$$

$$\Delta Z = |n| X^{n-1} \Delta X$$

- Equation 1
- Equation 2
- Equation 3
 - Equation 4

If uncertainty is calculated with the equation $\Delta z = |n| x^{n-1} \Delta x$, the measurement was calculated using an equation with _____.

- addition
- multiplication
- a power
- a function

If two distances are measured as: 1.0 \pm 0.1 m and 2.0 \pm 0.1 m, the total distance ($d_{\rm m}$) would equal ____.

 $0.1.0 \pm 0.1 \text{ m}$

 $0.0 \pm 0.1 \, \text{m}$

 $0.3.0 \pm 0.1 \,\mathrm{m}$

 $0.3.0 \pm 0.20 \text{ m}$

Extension Questions

Kirsten needs to create a solution composed of 150 mL of a chemical liquid. A variety of glassware is available. Table 1 describes the capacity and tolerance of each piece of glassware in Kirsten's laboratory. For this problem, let us assume that Kirsten's measurement techniques will be flawless and she will make no mistakes.

Table 1. Product information for transfer pipets and volumetric flasks, including capacity (total volume the glassware holds) and tolerance (uncertainty of measurement).

Glassware ID	Capacity (mL)	Tolerance (mL)
Pipet 01	1	± 0.006
Pipet 02	10	± 0.01
Flask A	25	± 0.03
Flask B	50	± 0.05
Flask C	100	± 0.08

- 1. Determine which combination of equipment would produce the best results:
 - a. Calculate the measurement with uncertainty for each of the following combinations. Use the addition rule

$$(\Delta z = |xy|\sqrt{\left(rac{\Delta x}{x}
ight)^2 + \left(rac{\Delta y}{y}
ight)^2 + \dots)}.$$

- i. Combination 1 Use "Flask C" 1 time; use "Pipet 02" 5 times:
- ii. Combination 2 Use "Flask B" 3 times:
- iii. Combination 3 Use "Flask C" 1 time; use "Flask B" 1 time:
- iv. Combination 4 Use "Pipet 01" 150 times:
- b. Which combination of measurements would produce the best results? Use your calculations to explain your answer.

(SAMPLE ANSWER BELOW)

a) i: $150.00 \pm 0.08 \text{ mL}$

ii: 150.00 ± 0.09 mL

iii: 150.00 ± 0.09 mL Typesetting math: 100% iv: $150.00 \pm 0.07 \text{ mL}$

b) Combination 4: using "Pipet 01" 150 times produces the best results. This combination of measurements has the least uncertainty (\pm 0.07 mL), and therefore the measured value will be more accurate than any other combination of measurements.

