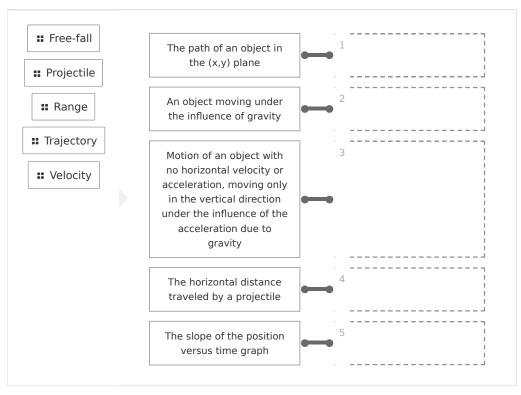
SI Physics - Full Discipline Demo

Projectile Motion


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

1 Trajectory 2 Projectile 3 Free-fall 4 Range 5 Velocity

Categorize each statement as True or False.

::

A change in the initial angle or the initial velocity of a projectile changes the range and maximum height of the projectile.

::

A larger acceleration would increase the range and maximum height of a projectile.

The acceleration in the horizontal direction is always zero for projectile motion.

::

The acceleration in the vertical direction is always the acceleration due to gravity for projectile motion.

::

The kinematic equations for vertical motion have only one possible solution for time of flight based on velocity.

True	False
1	2
T. Comments of the comment of the co	I I
1	I

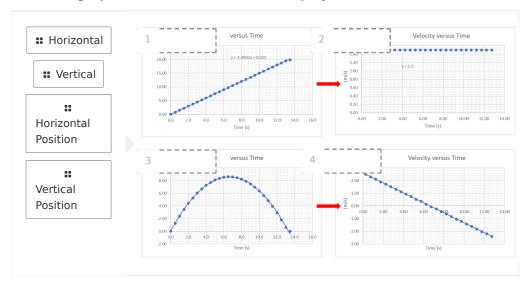
Correct answers:

1

A change in the initial angle or the initial velocity of a projectile changes the range and maximum height of the projectile.

The acceleration in the horizontal direction is always zero for projectile motion.

The acceleration in the vertical direction is always the acceleration due to gravity for projectile motion.


2

A larger acceleration would increase the range and maximum height of a projectile.

The kinematic equations for vertical motion have only one possible solution for time of flight based on velocity.

Label the graphs with the correct titles for projectile motion.

Correct answers:

1 Horizontal Position 2 Horizontal 3 Vertical Position 4 Vertical

Exploration

Free-fall motion is a type of projectile motion.

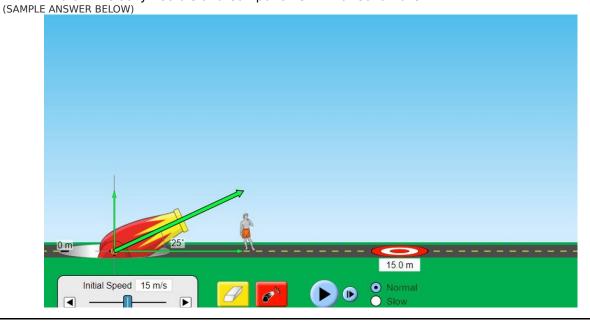
○ True		•
False		

The only factor connecting horizontal and vertical components of projectile motion is $___$.

velocity	
○ time	~
acceleration	
 None of the above 	

equations for i	horizontal motion.	
o total		
vertical		
horizontal		~
None of the	above	
The acceleration.	on in the horizontal direction is always $_$	for projectile
the accelera	ation due to gravity	
positive		
o zero		✓
None of the	above	
The range equ travels only wh	ation can be used to find the horizontal hen the initial and final heights are diffe	
The range equal travels only when the original of the original	ation can be used to find the horizontal	
The range equ travels only wh	ation can be used to find the horizontal	
The range equal travels only when air resist	ation can be used to find the horizontal	rent.
The range equal travels only when air resist	ation can be used to find the horizontal hen the initial and final heights are diffe	rent.
The range equatravels only when air resistant maximum	ation can be used to find the horizontal hen the initial and final heights are diffe	rent.
The range equatravels only when air resistant maximum the mass the shape	ation can be used to find the horizontal hen the initial and final heights are diffe	rent.

The slope of the that time.	_ versus time graph at each point in time is the at
oposition; velocity	✓
velocity; position	
acceleration; positi	ion
None of the above	
During projectile mo motion, so the horiz	otion, the horizontal acceleration is zero throughout the contal velocity
decreases at a con	stant rate
is constant	✓
increases linearly	
None of the above	
low are free-fall and parabo	olic motion similar? How are they different?
vertical velocity at each time	ection is the same for free-fall and parabolic motion, meaning the is governed by the acceleration due to gravity. The horizontal motion in free-fall it is zero, while in parabolic motion, it has a positive
n what circumstances is it a	ppropriate to use the range equation?
It is appropriate to use the rai equal.	nge equation when the starting and ending heights of the flight are


How did the horizontal velocity vector component change during the flight of the cannonball in the simulation? How did the vertical velocity vector component change? What are the causes of these changes? Refer to Photo 1 and Data Table 1 to support your answer.

The horizontal velocity vector component stayed exactly the same throughout the flight. The vertical velocity vector started out positive, decreased to zero, and became negative, eventually reaching the same value it started with at the same height as the initial height. The horizontal motion has no acceleration, so the velocity is constant. The vertical motion is accelerated throughout the motion by the acceleration due to gravity, so the vertical velocity is increasingly negative throughout the flight.

How long was the free-falling cannonball in flight? How long was the horizontally-launched projectile in flight? How did the initial and final velocities of these two flights compare? Refer to Data Table 2 to explain what these times and velocities suggest about how the horizontal and vertical motions of a projectile are related.

The free-falling and horizontally-launched projectile were both in flight for 1.43 seconds. The final vertical velocities of both flights were the same, but the horizontally-launched projectile had a greater total final velocity because it had a horizontal component. These results suggest that the horizontal and vertical motion of a projectile are completely independent from one another.

Photo 1: Velocity Vectors and Components - Initial Conditions

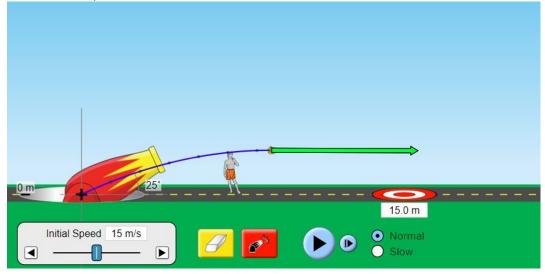
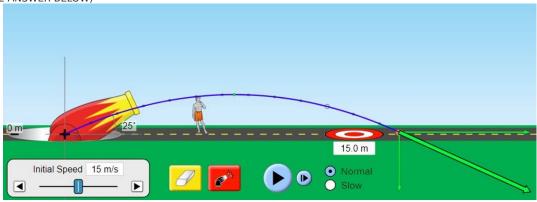
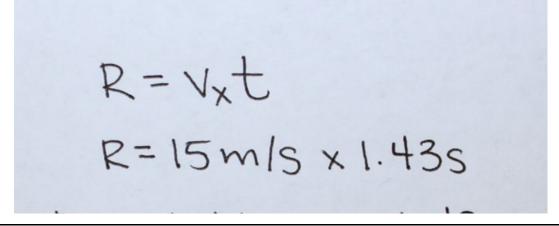



Photo 3: Velocity Vectors and Components - Landing (SAMPLE ANSWER BELOW)

Data Table 1: Vector Components of Velocity

(SAMPLE ANSWER BELOW)

Cannon Height (m)		Initial Speed (m/s)	v _{x,i} (m/s)	v _{y,i} (m/s)	v _{x,f} (m/s)	v _{y,f} (m/s)
0	25	15	13.59	6.34	13.59	-6.34


Data Table 2: Free Fall and Projectile Motion

(SAMPLE ANSWER BELOW)

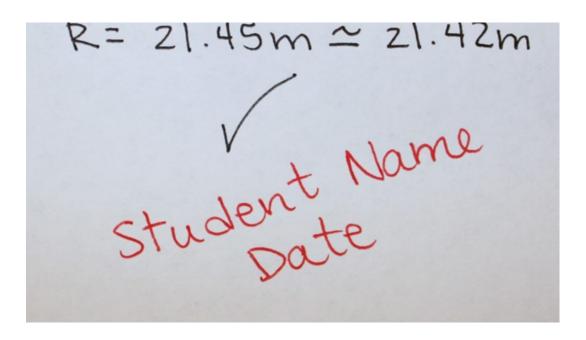

Trial	Description	Angle (°)	Launch Height y (m)	Initial Speed (m/s)	Time (s)	Range x (m)	v _{f,x} (m/s)	v _{f,y} (m/s)	v _f (m/s)
1	Projectile	0	10	15	1.43	21.42	15	-14.03	20.54
2	Free Fall	-90	10	0	1.43	0	0	-14.03	14.03

Photo 4: Calculated Range

(SAMPLE ANSWER BELOW)

Exercise 2

What is the effect on range and maximum height of a projectile as the launch height, launch speed, and launch angle are increased? Refer to your data in Data Tables 3-5 to support your answer.

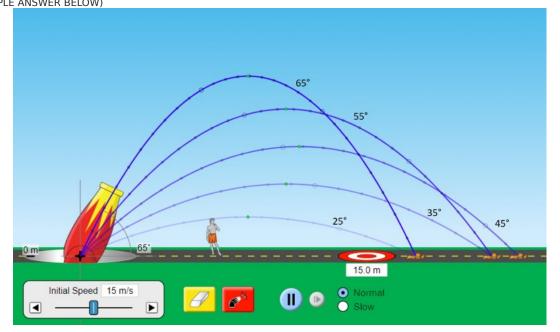
The range and maximum height increased as the launch height and launch speed increased. The range decreased as the launch angle increased, but the maximum height increased as the launch angle increased.

How does the shape of the trajectory of a projectile change as the launch angle is changed Refer to Photo 2 to support your answer.	d?
The trajectory becomes more pointed, less stretched out as the launch angle is increased. The projectile travels a shorter horizontal distance, but a larger vertical distance.	
What additional (if any) force(s)/variable(s) should be accounted for when applying the calculations used in the simulation to the real world? Explain your answer.	
Air resistance needs to be taken into account when applying the calculations to the real world. T force due to air resistance affects the acceleration of an object in the horizontal and vertical directions, impacting the trajectory of the projectile, including range and maximum height achieved.	he

Data Table 3: Varying Launch Height (SAMPLE ANSWER BELOW)

(SAPITE ANSWER BELOW)					
Launch Height (m)	Time (s)	Range (m)			
10	1.43	21.42			
8	1.28	19.16			
6	1.11	16.59			
4	0.9	13.55			
2	0.64	9.58			

Data Table 4: Varying Launch Speed (SAMPLE ANSWER BELOW)


(SAMPLE ANSWER BELOW)					
Launch Speed (m/s)	Time (s)	Range (m)	Maximum Height (m)		
5	0.43	1.95	0.23		
10	0.86	7.81	0.91		
15	1.29	17.57	2.05		
20	1.72	31.24	3.64		
25	2.15	48.81	5.69		

Data Table 5: Varying Firing Angle (SAMPLE ANSWER BELOW)

Angle (°)	Flight Time (s)	Flight Range (m)	Maximum Height (m)	v _{x,i} (m/s)	v _{y,i} (m/s)	Calculated Final Speed v_f (m/s)
0	0.64	9.58	2.00	15.00	0.00	16.23
15	1.15	16.62	2.77	14.49	3.88	16.24
30	1.76	22.87	4.87	12.99	7.50	16.25
45	2.34	24.79	7.73	10.61	10.61	16.27
60	2.79	20.96	10.60	7.50	12.99	16.22
75	3.09	11.98	12.70	3.88	14.49	16.29
90	3.19	0.00	13.47	0.00	15.00	16.29

Photo 5: Varying Launch Angles (SAMPLE ANSWER BELOW)

Photo 6: Calculation of Launch Angle (SAMPLE ANSWER BELOW)

$$R = \frac{V_0^2 \sin 2\theta}{9}$$

$$gR = V_0^2 \sin 2\theta$$

$$\frac{gR}{V_0^2} = \sin 2\theta \qquad \text{Student}$$

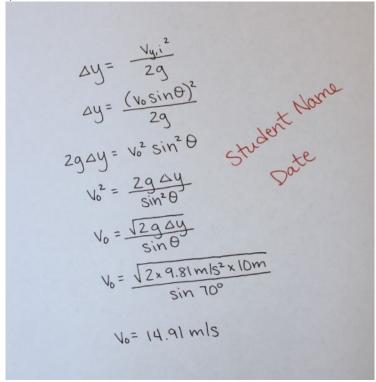
$$2\theta = \sin^{-1}\left(\frac{gR}{V_0^2}\right) \qquad \text{Date}$$

$$\theta = \frac{1}{2}\sin^{-1}\left(\frac{gR}{V_0^2}\right)$$

$$\theta = \frac{1}{2}\sin^{-1}\left(\frac{gR \sin |s^2 \times 15m}{(13m/s)^2}\right)$$

$$\theta = \frac{1}{2}\sin^{-1}\left(0.871\right)$$

$$\theta = 30.27^{\circ}$$


Data Table 6: Predictions

(SAMPLE ANSWER BELOW)

Predicted Angle (°)	Prediction Correct?	Predicted Speed (m/s)	Prediction Correct?
30	Yes	15	Yes

Photo 7: Calculation of Initial Speed

(SAMPLE ANSWER BELOW)

Exercise 3

Compare the slope of the x-t graph in Graph 1 to the velocity v_x found in the v_x -t graph in Graph 3. Compare the slope of the v_y -t graph in Graph 4 to the acceleration due to gravity. Compare the shape of the y-t graph in Graph 2 to the trajectory of the cannonball in the simulation. Do these results meet your expectations? Why or why not?

The slope of the x-position graph is equal to the constant velocity in the horizontal direction. The

The slope of the x-position graph is equal to the constant velocity in the horizontal direction. The slope of the vertical velocity-time graph is equal to 9.8 m/s^2 , which is the acceleration due to gravity. The shape of the y-position graph is the same as the shape of the trajectory of the cannonball. These results match my expectations because they are graphical representations of the kinematic equations for projectile motion.

At what time does the ν_y -t graph in Graph 4 cross the horizontal axis? What is the y-position at this time, as indicated in Graph 2? Explain your results.

The vertical velocity – time graph crosses the horizontal axis at t=1.3 seconds, which is the same time that the y-t graph peaks at the maximum vertical position. The maximum vertical position (the maximum height) is the turning point of the projectile, when the vertical velocity is momentarily zero.

Data Table 7: Position at Different Timepoints (SAMPLE ANSWER BELOW)

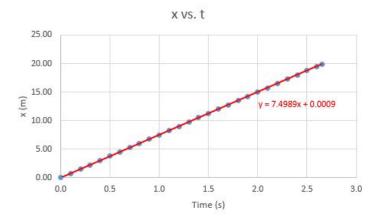
 Time (s)
 x (m)
 y (m)

 0.0
 0.00
 0.00

 0.1
 0.75
 1.25

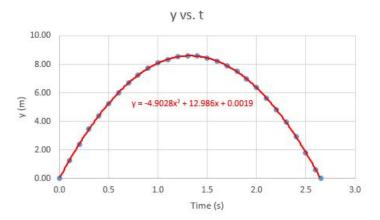
 0.2
 1.50
 2.40

 0.3
 2.25
 3.46

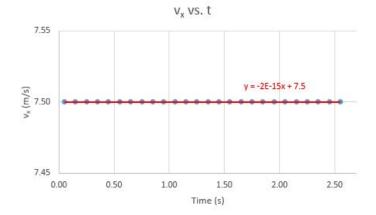

		· · · · · · · · · · · · · · · · · · ·
0.4	3.00	4.41
0.5	3.75	5.27
0.6	4.50	6.03
0.7	5.25	6.69
0.8	6.00	7.25
0.9	6.75	7.72
1.0	7.50	8.09
1.1	8.25	8.35
1.2	9.00	8.53
1.3	9.75	8.60
1.4	10.50	8.57
1.5	11.25	8.45
1.6	12.00	8.23
1.7	12.75	7.91
1.8	13.50	7.49
1.9	14.25	6.97
2.0	15.00	6.36
2.1	15.75	5.65
2.2	16.50	4.84
2.3	17.25	3.93
2.4	18.00	2.92
2.5	18.75	1.82
2.6	19.50	0.62
2.7	19.86	0.00

Data Table 8: Slope of Position at Different Timepoints (SAMPLE ANSWER BELOW)

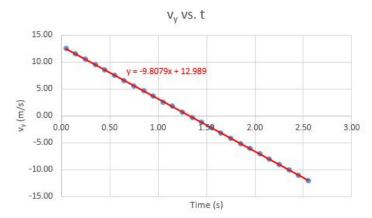
Time (s)	Δx (m)	Δy (m)	v _x (m/s)	v _y (m/s)
0.05	0.75	1.25	7.50	12.50
0.15	0.75	1.15	7.50	11.50
0.25	0.75	1.06	7.50	10.60
0.35	0.75	0.95	7.50	9.50
0.45	0.75	0.86	7.50	8.60
0.55	0.75	0.76	7.50	7.60
0.65	0.75	0.66	7.50	6.60
0.75	0.75	0.56	7.50	5.60
0.85	0.75	0.47	7.50	4.70
0.95	0.75	0.37	7.50	3.70



1.05	0.75	0.26	7.50	2.60
1.15	0.75	0.18	7.50	1.80
1.25	0.75	0.07	7.50	0.70
1.35	0.75	-0.03	7.50	-0.30
1.45	0.75	-0.12	7.50	-1.20
1.55	0.75	-0.22	7.50	-2.20
1.65	0.75	-0.32	7.50	-3.20
1.75	0.75	-0.42	7.50	-4.20
1.85	0.75	-0.52	7.50	-5.20
1.95	0.75	-0.61	7.50	-6.10
2.05	0.75	-0.71	7.50	-7.10
2.15	0.75	-0.81	7.50	-8.10
2.25	0.75	-0.91	7.50	-9.10
2.35	0.75	-1.01	7.50	-10.10
2.45	0.75	-1.10	7.50	-11.00
2.55	0.75	-1.20	7.50	-12.00



Graph 2: y-Position versus Time (SAMPLE ANSWER BELOW)



Graph 3: x-Velocity versus Time (SAMPLE ANSWER BELOW)

Graph 4: y-Velocity versus Time (SAMPLE ANSWER BELOW)

Competency Review The $\underline{\hspace{1cm}}$ is the path of an object in the (x, y) plane. range trajectory projectile All of the above _ is an example of projectile motion. Free-fall Parabolic motion An object tossed straight up into the air All of the above In the equation $y=y_0+v_{y,0}-rac{1}{2}gt^2,\;v_{y,0}$ stands for the ____ velocity. total initial initial horizontal initial vertical None of the above

The vertical motion of a projectile is dependent on its horizontal motion.		
True		
False	~	
A change in the initial of a projectile changes the range and maxim height of the projectile.	num	
angle		
velocity		
height		
All of the above	~	
If the acceleration due to gravity was larger, a projectile's range and maximum height for a particular set of initial conditions would be if the acceleration due to gravity was unchanged.	than	
smaller	~	
unchanged		
None of the above		
During projectile motion, the horizontal velocity is zero at the highest p of flight.	oint	
True		
○ False	*	
A projectile launched horizontally will travel for the same amount of times as a projectile dropped vertically from the same height.	ne	
○ True	~	
False		

When air resistance is ignored, the maximum range of a projectile is achieved for a launch angle of degrees.		
○ 30		
○ 45	~	
○ 50		
 None of the above 		
Increasing the initial launch speed of a projectile launched at a constant angle increases the		
time of flight		
maximum height		
○ range		
All of the above	~	
The slope of a vertical velocity versus time graph is the		
acceleration due to gravity	~	
horizontal velocity		
 vertical position 		
 None of the above 		
The horizontal acceleration of a projectile is		
the acceleration due to gravity		
o zero	~	
 dependent on the initial horizontal velocity 		
O None of the above		

The vertical velocity versus time graph crosses the horizontal axis at the time when the vertical position graph			
	 crosses the horizontal axis 		
	oreaches its minimum value		
	reaches its maximum value	✓	
	None of the above		

Extension Questions

A launched rocket is not initially considered a projectile. Explain why not and describe the point at which a rocket becomes a projectile during its flight. (SAMPLE ANSWER BELOW)

A rocket is not a projectile because it is not moving only under the influence of gravity. It is powered by the rocket fuel and thus accelerates at a different rate, potentially at a different angle than 90 degrees. A rocket becomes a projectile when its fuel runs out and its starts to move only under the influence of gravity.

Describe three everyday examples of objects that behave like projectiles. (SAMPLE ANSWER BELOW)

Answers will vary. Some possibilities are: a thrown or kicked football, a thrown or hit baseball, a coin dropped, a hit volleyball or tennis ball, a fruit or nut falling from a tree, a coin toss, etc.

