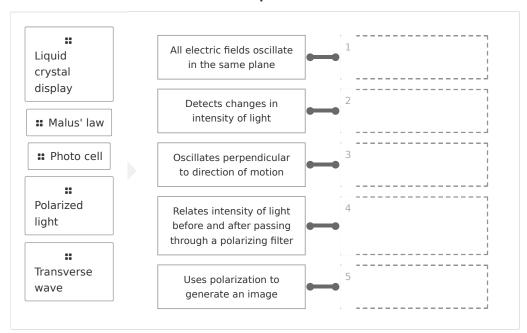
SI Physics - Full Discipline Demo

Polarimetry


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

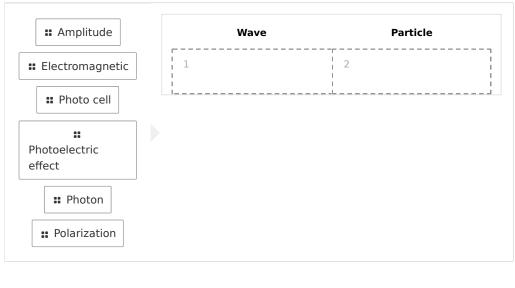
- 1 Polarized light 2 Photo cell 3 Transverse wave 4 Malus' law
- 5 Liquid crystal display

Categorize each statement as true or false.

: Intensity is proportional to amplitude squared.
■ Light from the sun is polarized. ■ Polarized sunglasses are polarized vertically.
The intensity of unpolarized light is reduced by half when it passes through a polarizing filter.
: The sky is blue because of reflection.
Unpolarized light consists of many waves of light with random orientations.
True False
1 2

Correct answers:

1 Intensity is proportional to amplitude squared.


Unpolarized light consists of many waves of light with random orientations.

Polarized sunglasses are polarized vertically.

The intensity of unpolarized light is reduced by half when it passes through a polarizing filter.

2 Light from the sun is polarized. The sky is blue because of reflection.

Categorize each term as relating to the wave or particle nature of light.

Correct answers:

- 1 Amplitude Electromagnetic Polarization
- 2 Photo cell Photoelectric effect Photon

Exploration

Light is a(n) ____, meaning it oscillates perpendicular to the direction of propagation.

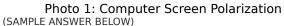
- longitudinal wave
- transverse wave
 - oscillating electric field
 - None of the above

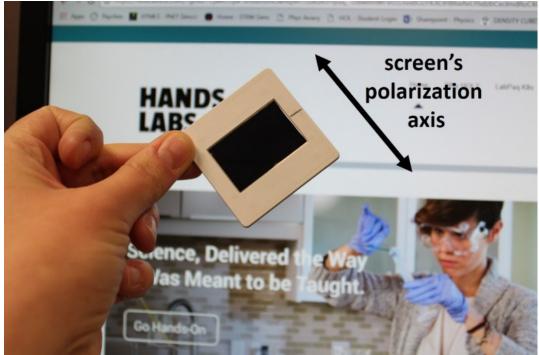
Linearly polarized light all oscillates in the same plane, called the _____.

- plane of polarization
- parallel plane
- plane of alignment
- None of the above

ре	hen unpolarized light encounters two polarizing filters aligned erpendicular to each other, no light is transmitted through the second lter.	
- 1	True	~
'	False	
	nly the component of light parallel to the of a polarizing filter is ansmitted through the filter.	
	 plane of polarization 	~
	intensity	
	o polarization axis	
	 None of the above 	
TH	ne intensity of a light wave is proportional to the amplitude of the wave	. .
	○ True	
	False	~
	then a small potential difference is applied across an LCD pixel, the pixel.	èl
	bright	
	dark	~
-	unaffected	
	None of the above	

and eje	effect occurs when photons of light encounter a metallic surect electrons.	
o sola	ar cell	
O pho	oton	
O pho	otoelectric	✓
O Nor	ne of the above	
For a ph	hotodiode, intensity is proportional to	
o resi	sistance	
0 1/re	esistance	✓
o resi	sistance squared	
O Nor	ne of the above	
-	CD display on calculators or electronic wristwatches appear corrough polarized sunglasses? How could one read the display wisinglasses?	-
when viewed thr	rough polarized sunglasses? How could one read the display wi	-
when viewed thr	rough polarized sunglasses? How could one read the display wi	-
when viewed threemoving the su If an LCD display display is polariz	rough polarized sunglasses? How could one read the display wi	light from the read the
when viewed threemoving the su If an LCD display display is polariz	rough polarized sunglasses? How could one read the display winglasses? y appears black when wearing polarized sunglasses, this means the zed perpendicularly to the polarization of the sunglasses. One could	light from the read the
when viewed the removing the su If an LCD display display is polariz display without r	rough polarized sunglasses? How could one read the display winglasses? y appears black when wearing polarized sunglasses, this means the zed perpendicularly to the polarization of the sunglasses. One could	light from the read the wristwatch.
when viewed the removing the su If an LCD display display is polariz display without r	rough polarized sunglasses? How could one read the display winglasses? y appears black when wearing polarized sunglasses, this means the zed perpendicularly to the polarization of the sunglasses. One could removing the glasses by tilting their head or tilting the calculator or beneficial for a photographer to have a polarizing filter for the	light from the read the wristwatch.
when viewed the removing the su If an LCD display display is polariz display without r	rough polarized sunglasses? How could one read the display winglasses? y appears black when wearing polarized sunglasses, this means the zed perpendicularly to the polarization of the sunglasses. One could removing the glasses by tilting their head or tilting the calculator or beneficial for a photographer to have a polarizing filter for the	light from the read the wristwatch.

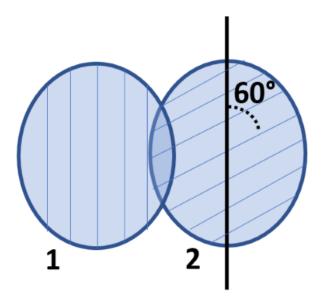

What does the vertical polarization axis of polarized sunglasses indicate about the direction of polarization of light bouncing off a horizontal surface, such as a wet road or lake surface? Hint: The purpose of polarized sunglasses is to reduce glare without blocking out all light.


Polarized sunglasses being vertically-polarized means they will let vertically-polarized light through while blocking all horizontally-polarized light. Since these sunglasses reduce glare, this implies that the majority of the light bouncing off the object, which causes the glare, is horizontally polarized.

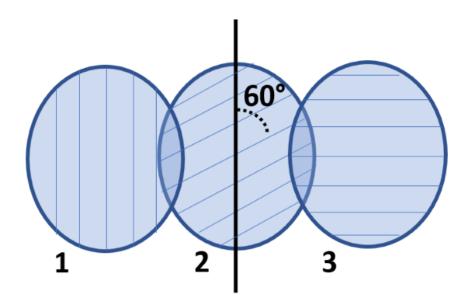
Panel 1: Blue Sky Polarization Observations

(SAMPLE ANSWER BELOW)

As the filter rotates, the clouds in the sky become more or less clear and crisp. When the filter's polarization axis is at an angle from the vertical, the clouds appear to be the most crisp and easiest to see.



Panel 2: Crossed Polarizers (SAMPLE ANSWER BELOW)
As the card rotated relative to the stationary one, the light dimmed until it was completely dark, then brightened again as the card continued to rotate. When the polarization axes of the two cards were perpendicular, it was the dimmest, and when they were parallel it was the brightest.
Exercise 2
Why was this exercise performed in a dimly-lit room? What was the purpose of measuring the background intensity?
This exercise is done in a dimly-lit room because ambient light in the room will be detected by the photocell. The background intensity was determined so it could be subtracted from the flashlight intensity incident on the photocell. This gives a more accurate depiction of what happens to light intensity with the addition and rotation of polarizing filters.
What is the transmitted intensity of light if unpolarized light passes through a single polarizing filter and the initial intensity is 80 W/m ² ?


A polarizing filter blocks out all components of light perpendicular to the polarization axis and allows light parallel to the axis to be transmitted. So, half of the incident light is transmitted through a single filter. Thus, the transmitted light intensity is 40 W/m^2 .

What is the transmitted intensity of light if an additional polarizer is added at a 60° angle to the setup described in Question 2? Show all work in your answer.

For two polarizers at a relative angle Θ , the new intensity I is given by $I=I_0\cos^2\Theta$. After the light that passes through the first filter, it has an intensity of 40 W/m². The second filter is at a 60° angle relative to the polarization axis of the first filter. So, the intensity of light after passing through the second filter is: $I=40 \text{ W/m}^2*(\cos(60^\circ))^2=40 \text{ W/m}^2*(1/2)^2=40 \text{ W/m}^2*(1/4)=10 \text{ W/m}^2$.

What is the transmitted intensity of light if an additional polarizer is added perpendicular to the first polarizer in the setup described in Question 3? Show all work in your answer.

After the light that passes through the second filter, it has an intensity of 10 W/m^2 . The third filter is at a 30° angle relative to the polarization axis of the second filter. the intensity of light after passing through the third filter is: $I=10 \text{ W/m}^2*(\cos(30^\circ))^2=10 \text{ W/m}^2*(0.866)^2=7.5 \text{ W/m}^2$.

How do Graphs 1 and 2 illustrate the behavior of light transmission through two and three polarizing cards?

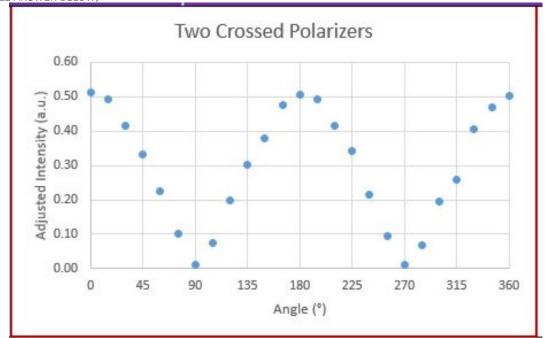
For two filters, one would expect that at a relative angle of 90° no light would pass through. The behavior would look like a $\cos^2\theta$ function, which begins at 1, when axes are parallel and is 0 at 90° and 270°; Graph 1 matches this. For three filters, one would expect to see no light transmitted when the center filter makes a 90° angle with either card (at 5 cm or 15 cm). This would resemble the function: $\cos^2\theta*\cos^2(90^\circ-\theta)\sim\cos^2\theta*\sin^2\theta$, which is 0 at every 90° interval; Graph 2 matches this.

Data Table 1: Background Intensity (SAMPLE ANSWER BELOW)

Background Resistance R_0 ($k\Omega$)	Background Intensity 1/R ₀
990	0.00101

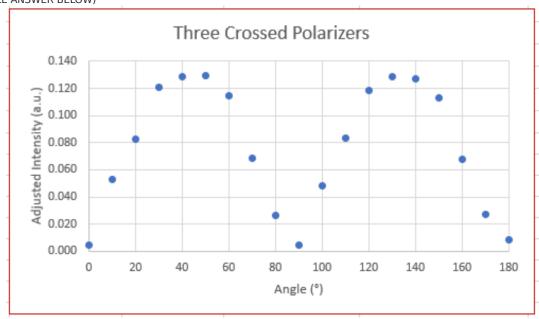
Data Table 2: Resistance and Light Intensity for Single Polarizer (SAMPLE ANSWER BELOW)

Number of Polarizing Cards	Resistance R $(k\Omega)$	Relative Light Intensity 1/R (a.u.)	Adjusted Light Intensity $1/R - 1/R_0$ (a.u.)	Ratio
0	0.840	1.19	1.19	0.560
1	1.50	0.667	0.666	0.500


Data Table 3: Resistance and Light Intensity for Two Crossed Polarizers (SAMPLE ANSWER BELOW)

Angle (°)	Resistance R $(k\Omega)$	Relative Light Intensity 1/R (a.u.)	Adjusted Light Intensity $1/R - 1/R_0$ (a.u.)
0	1.94	0.515	0.514
15	2.03	0.493	0.492
30	2.39	0.418	0.417
45	2.99	0.334	0.333
60	4.41	0.227	0.226
75	9.87	0.101	0.100
90	82.00	0.01220	0.01119
105	13.20	0.07576	0.07475
120	5.01	0.200	0.199
135	3.29	0.304	0.303
150	2.62	0.382	0.381
165	2.10	0.476	0.475
180	1.97	0.508	0.507
195	2.03	0.493	0.492
210	2.40	0.417	0.416
225	2.92	0.342	0.341
240	4.65	0.215	0.214
255	10.53	0.09497	0.09396
270	80.00	0.01250	0.01149
285	14.60	0.06849	0.06748
300	5.13	0.195	0.194
315	3.86	0.259	0.258
330	2.45	0.408	0.407
345	2.13	0.469	0.468

0.503 0.502 360 1.99


Graph 1: Two Crossed Polarizers (SAMPLE ANSWER BELOW)

Data Table 4: Resistance and Light Intensity for Three Crossed Polarizers (SAMPLE ANSWER BELOW)

Resistance R Relative Light Intensity 1/R Adjusted Light Intensity 1/R - 1/R₀ Angle (°) $(k\Omega)$ (a.u.) (a.u.) 0 192.20 0.0052029 0.0041929 10 18.54 0.05394 0.05293 20 11.91 0.08396 0.08295 30 8.20 0.122 0.121 0.130 40 7.72 0.129 50 7.66 0.131 0.130 60 8.64 0.116 0.115 70 14.33 0.06978 0.06877 80 36.50 0.02740 0.02639 90 172.50 0.0057971 0.0047871 100 20.25 0.04938 0.04837 110 11.85 0.08439 0.08338 0.120 120 8.35 0.119 130 7.72 0.130 0.129 140 7.81 0.128 0.127 150 8.78 0.114 0.113 160 14.57 0.06863 0.06762 170 35.50 0.02817 0.02716 180 104.30 0.0095877 0.0085777

Graph 2: Three Crossed Polarizers (SAMPLE ANSWER BELOW)

Competency Review	
Light can be polarized by	
transmission	
reflection	
scattering	
All of the above	~
Light waves that oscillate perpendicular to the polarization axis of a polarizing filter are by the filter.	
transmitted	
stopped	✓
• reflected	
 None of the above 	

Polarization by reflection most often produces horizontally-polarized lig	ht.
○ True	~
○ False	
produces partially-polarized skylight.	
 Transmission 	
 Reflection 	
Scattering	~
All of the above	
The plane of oscillation of a light wave can be decomposed into components. two parallel two perpendicular	*
three perpendicular	
O None of the above	
The intensity of polarized light passing through a polarizing filter is proportional to of the polarization axis relative to the plane of polarization. angle	
cosine of the angle	
o cosine squared of the angle	~
None of the above	

less than half	~
o none	
half	
O None of the above	
A photo cell detects light intensity using the	
wave nature of light	
 polarization of light 	
photoelectric effect	✓
	to the
 None of the above In the photoelectric effect the number of electrons ejected is intensity of the light. proportional inversely proportional unrelated 	to the
In the photoelectric effect the number of electrons ejected is intensity of the light.	
In the photoelectric effect the number of electrons ejected is intensity of the light. proportional inversely proportional unrelated	the
In the photoelectric effect the number of electrons ejected is intensity of the light. proportional inversely proportional unrelated None of the above	the
In the photoelectric effect the number of electrons ejected is intensity of the light. proportional inversely proportional unrelated None of the above The background intensity measured by a photodiode must be measured intensity to accurately determine the true intensity	the

Light emitted from an LCD is polarized.	
○ True	~
• False	
The polarization of skylight is the greatest at the Sun.	an angle of degrees from
O 0	
90	~
180	
All of the above	
intensity as the filter is rotated through	180 degrees.
When polarized light is viewed through a polaritensity as the filter is rotated through changes slowly changes instantaneously	
intensity as the filter is rotated through changes slowly	180 degrees.
intensity as the filter is rotated throughchanges slowlychanges instantaneously	180 degrees.
 as the filter is rotated through changes slowly changes instantaneously remains constant 	180 degrees.
intensity as the filter is rotated through changes slowly changes instantaneously remains constant None of the above The polarization axis of a polarizing filter is d	180 degrees.
intensity as the filter is rotated through changes slowly changes instantaneously remains constant None of the above The polarization axis of a polarizing filter is direction at which glare is	180 degrees.
intensity as the filter is rotated through changes slowly changes instantaneously remains constant None of the above The polarization axis of a polarizing filter is direction at which glare is maximized	180 degrees.

When the polarization axes of two polarizing filters are aligned, the intensity of light that passes through the filters is	
O zero	
 the same as the initial intensity 	
half the initial intensity	~
None of the above	
When the polarization axes of two polarizing filters are offset by 25 degrees, the intensity of light that passes through the filters is	
○ zero	
less than half the initial intensity	~
half the initial intensity	
 None of the above 	
When the polarization axes of three polarizing filters are offset by 90 degrees, the intensity of light that passes through the filters is	
	~
○ zero	
zerothe same as the initial intensity	

Extension Questions

Damon purchased a pair of sunglasses that were advertised as being polarized. Describe how Damon could test the sunglasses to verify they are polarized. (SAMPLE ANSWER BELOW)

While looking through the sunglasses, view an object with glare, such as a pond or car windshield, and tilt your head sideways to see if the glare is stronger at this angle. If the amount of glare changes with the angle of the glasses, the sunglasses are polarized. Or look at an LCD screen such as a cell phone or digital watch screen through the glasses, rotating the screen while keeping the sunglasses stationary. If the screen appears dark at some point during the rotation, the sunglasses are polarized.

