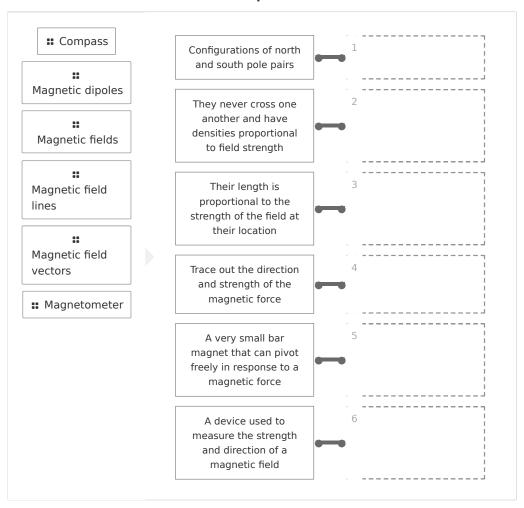
SI Physics - Full Discipline Demo

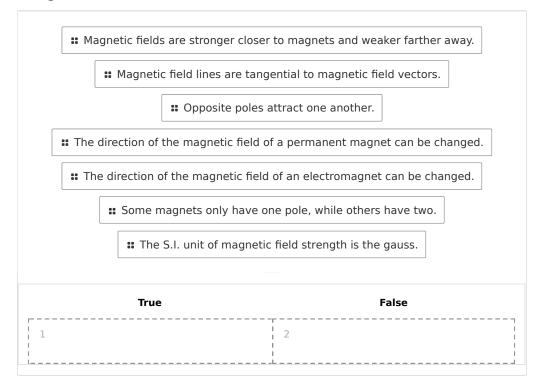
Mapping Magnetic Fields

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge


Match each term with the best description.

Correct answers:

- 1 Magnetic dipoles 2 Magnetic field lines 3 Magnetic field vectors
- 4 Magnetic fields 5 Compass 6 Magnetometer

Categorize each statement as true or false.

Correct answers:

Magnetic fields are stronger closer to magnets and weaker farther away.

Magnetic field lines are tangential to magnetic field vectors.

Opposite poles attract one another.

The direction of the magnetic field of an electromagnet can be changed.

2

The direction of the magnetic field of a permanent magnet can be changed.

The S.I. unit of magnetic field strength is the gauss.

Some magnets only have one pole, while others have two.

Exploration

one-another.	
○ True	
○ False	~
A paperclip will be attracted to both the north and south poles of a bar magnet because the paperclip becomes	
magnetically charged	
magnetically polarized	✓
a magnetic dipole	
 None of the above 	
Magnetic field lines point north poles and south poles.	
away from; toward	✓
o toward; away from	
toward; toward	
 None of the above 	
The principle of states that the total field strength and direction at any given point in space is the vector sum of all the individual fields present at that location.	
equalization	
conservation	
superposition	✓
 None of the above 	

Like magnetic poles, either north and north or south and south, attract

The north pole of a compass needles points toward the of a nearby magnet.	
onorth pole	
o south pole	✓
o middle	
 None of the above 	
Magnetic resonance imaging uses to measure magnetic field streng	gth.
magnetometers	~
gaussmeters	
compasses	
None of the above	
is a magnetic material.	
Iron	
○ Nickle	
Cobalt	
All of the above	~
Magnets created using electric currents are called	
permanent magnets	
geomagnets	
electromagnets	✓
All of the above	
The Northern and Southern lights are caused by charged particles trave along Earth's magnetic field lines.	ling
○ True	✓
□ False	

	All magnetic fields are continuous, forming closed loops, unlike electric fields.	
	○ True	
	○ False	
Exerci	ise 1 the magnetic field lines from Photo 2 and Photo 3 similar and different? Coi	nsider
_	eral shape of the magnetic field, the location of the zero field, and the direct Inetic field lines.	tion of
same go of the zo each ma	Id lines from Photo 1 and Photo 3 are essentially identical – the field lines take on eneral shape, connecting north and south poles with magnetic field lines, and the latero field is the same. Along the line between the magnets, the field lines split to cotage. The major difference is the direction of the magnetic field lines; this is becatic field lines always point from the north magnetic pole to the south magnetic pole	location onnect to luse
	e the magnetic field lines from Photo 1 and Photo 4 similar and different? Cor eral shape of the magnetic field and the direction of the magnetic field lines	
match t configur This me field line between	Id lines in Photo 4 are similar to Photo 1 because the field lines near each of the rethe field lines for a single magnet. Looking at the field lines farthest away from the ration, we see lines connecting the north pole of one magnet to the south pole of the eans that, zoomed out, the field line of the two magnets in Photo 4 will look just like es of a single magnet. A major difference between the two drawings is the field lines in the magnets in Photo 4 , though it would be expected that field lines connecting and south poles of the two magnets wouldn't be present for a single magnet.	the other. ke the es

Do the field lines seen in Photos 2-4 align with the principle of superposition? Explain your answer.		
Yes, they align with the principle of superposition, which states field lines add together. In Photos 2 and 3 , the central line is the addition of the field lines from each magnet. Superposition is clear at the midpoint between the two magnets, where the field lines point in opposite directions, canceling to produce a field strength of zero. In Photo 4 the horizontal field lines of the two magnets add together farther away from the magnet and vertical components cancel between the magnets due to their opposing directions, creating a single field line.		
How would the magnetic field lines appear for a bar magnet cut at the midpoint, with the two pieces placed end to end with a space in between such that the cut edges are closest to each other? What would the general shape of the field lines look like? What would the field lines look like in between the two pieces?		
The field lines would look like what is seen in Photo 4 . When a magnet is split in half, isolated poles are not created. Instead, two magnets are created, each with north and south magnetic poles.		
Do magnetic field lines ever cross? Reference Photos 1-4 in your answer and explain any discrepancies between what you saw and what you'd expect to see.		
Magnetic field lines never cross, as the drawings indicate. This is due to the principle of superposition – when two field lines approach each other, they simply add instead of cross. (Student answers may vary based on the accuracy of their drawings.)		
Where is the magnetic field of a bar magnet the strongest? Note: Field line density is indicative of magnetic field strength.		

The magnetic field is strongest near the north and south poles of the magnet. This is where the density is the largest on each of the four drawings.

Photo 1: Magnetic Field Lines of a Single Magnet (SAMPLE ANSWER BELOW)

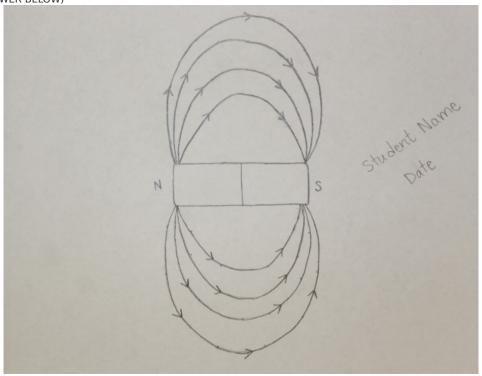


Photo 2: Magnetic Field Lines of Two Magnets: N-N (SAMPLE ANSWER BELOW)

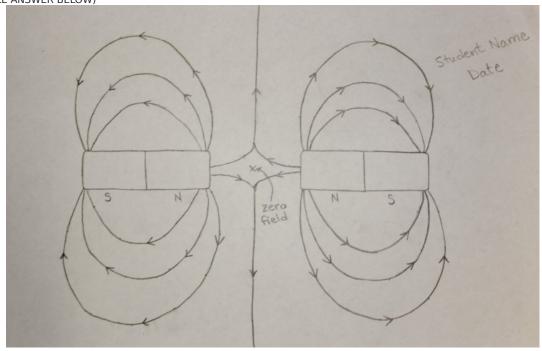


Photo 3: Magnetic Field Lines of Two Magnets: S-S (SAMPLE ANSWER BELOW)

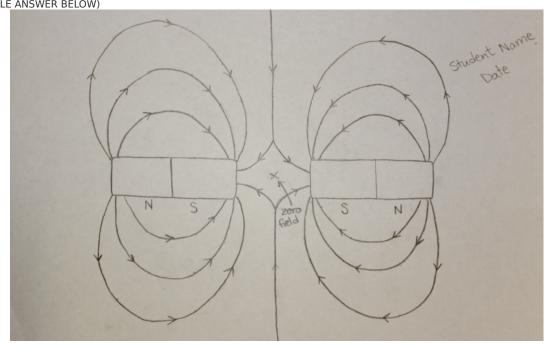
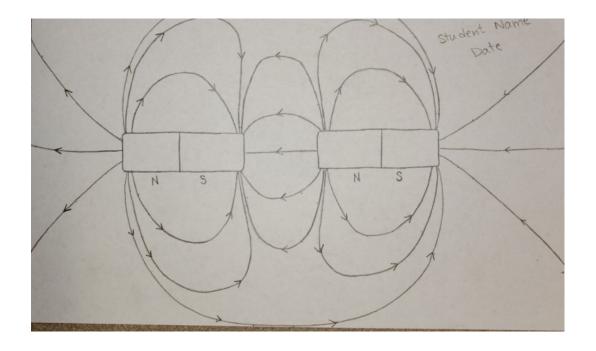



Photo 4: Magnetic Field Lines of Two Magnets: N-S (SAMPLE ANSWER BELOW)

Competency Review

North poles exert a(ii)	force on south poles.
repulsive	
o neutral	
attractive	✓
All of the above	
A magnetic is the co	onfiguration of magnetic poles consisting of a north
dipole	✓
monopole	
o pair	
 None of the above 	
The magnetic field is a visual magnetic poles. charge force aura None of the above	sualization of the magnetic between
Magnetic are useful particular location. fields field vectors field lines All of the above	for representing the magnetic field at one

	mpass needle is a small that responds to the magnet force ted on it by a nearby magnetic field.	
	bar magnet	~
	electromagnet	
	gaussmeter	
	All of the above	
A(n)	is made of magnetic materials and has a static magnetic field	
	electromagnet	
	geomagnet	
	permanent magnet	~
•	All of the above	
chan	direction of the magnetic field of an electromagnet can be changed aging the direction of the electric current. True	by
	False	
	bar magnets aligned south pole to south pole will attract one anoth t affixed in place.	ner
	True	
0	False	~
	narking the tip and tail locations of a compass in the presence of a netic field, the magnetic are traced out.	
1		
	field lines	•
1	field lines field vectors	•
		•

Magnetic field lines directly between two north poles curve away from the two poles.	
○ True	
False	
Due to the principle of superposition, the magnetic field centered between two south poles is	
 the strongest 	
variable	
○ zero	
 None of the above 	
The magnetic field is closer to a magnet as compared to farther away.	
○ stronger ✓	
□ weaker	
unchanged	
 None of the above 	

Extension Questions

The south pole of a bar magnet is brought near the center of a second bar magnet. Will the force between the two magnets be attractive, repulsive, or zero? Explain your answer. (SAMPLE ANSWER BELOW)

The force will be attractive between the south pole of the moving bar magnet and the north pole of the stationary bar magnet, and repulsive between the two south poles, so that the stationary magnet will experience a torque and will rotate so that its north pole aligns with the south pole of the moving magnet.

