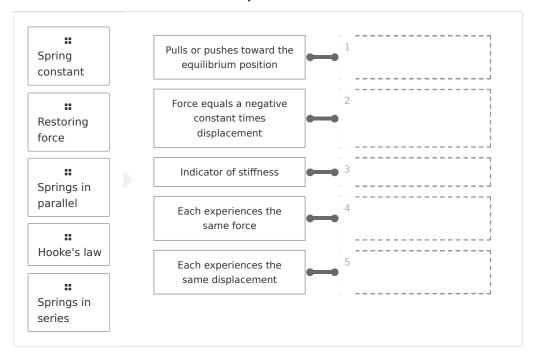
SI Physics - Full Discipline Demo

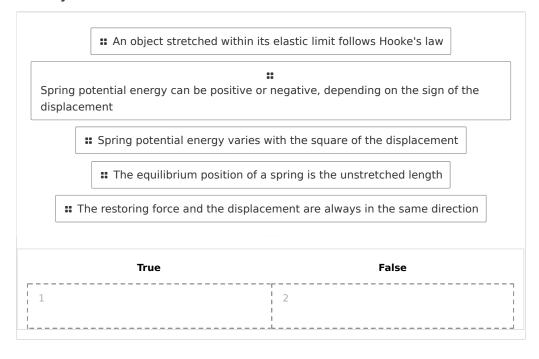
Hooke's Law - Digital


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge


Match each term to the best description.

Correct answers:

- 1 Restoring force 2 Hooke's law 3 Spring constant
- 4 Springs in series 5 Springs in parallel

Identify each statement as true or false.

Correct answers:

 $1\,$ $\,$ An object stretched within its elastic limit follows Hooke's law

Spring potential energy varies with the square of the displacement

The equilibrium position of a spring is the unstretched length

2

Spring potential energy can be positive or negative, depending on the sign of the displacement

The restoring force and the displacement are always in the same direction

Exploration

The restoring force is proportional to the displacement from the equilibrium.

True			
False			

The restoring force always points away from the equilibrium position	on.
O True	
○ False	~
The spring constant indicates the of the spring.	
length	
mass	
stiffness	~
 None of the above 	
Springs combined in parallel will each experience the same	
 displacement 	~
oforce	
 spring constant 	
 All of the above 	
A spring stretched beyond its elastic limit will	
return to its original length	
remain deformed	~
still follow Hooke's law	
None of the above	
still follow Hooke's law	•
The change in spring potential energy of a spring is equal to the an on the spring.	nount of
o work done	~
• weight	
o mass	
All of the above	

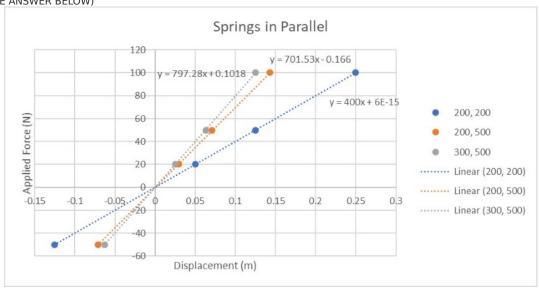
	Spring potential energy is conserved for a hanging mass on a spring at rest.	
	True	
	○ False	~
Exerc	ise 1	
constan	ffective spring constant for springs in parallel larger or smaller than the s it of each individual spring? Is the effective spring constant for springs in or smaller than the spring constant of each individual spring? Explain your	series
each ir consta	ective spring constant for springs in parallel is equal to the sum of the spring condividual spring, so it is larger than each individual spring constant. The effective nt for springs in series is the inverse of the sum of the inverse of the spring constant.	spring
	the relationship between the applied force of a hanging mass on a spring force of the spring?	and the
the spr	plied force is equal in magnitude and points in the opposite direction as the spring in all cases, regardless of the spring constant as is demonstrated by the value force and spring force respectively of 20 and -20 N, for example.	
spring o	e the effective spring constants calculated in Data Table 1 and Data Table constants derived from the graphs in Graph 1 and Graph 2. Which method results and why?	
	rective spring constants calculated from the equations in the data tables are esseal to the effective spring constants determined from the graphs. Those calculate	

equations are theoretical, while those from the graphs are experimental. Experimental results are a more reliable indicator of the actual conditions of the experiment, so the effective spring constants found from the graph are more reliable. However, since this was a simulation, the theoretical and experimental data match exactly.

What is the relationship between the spring potential energy of a spring and the spring constant of the spring? Use the data in Data Table 4 to support your answer.	
For a given displacement, and/or applied force, the potential energy increases as the spring constant increases. When the spring constant doubles from 100 N/m to 200 N/m for a displacement of 0.20 m, the spring potential energy also doubles from 2 J to 4 J. This is a linearly proportional relationship.	
Compare the graph in Graph 3 to the Energy Plot in the Energy page of the simulation. Who do these two graphs tell you about the relationships between potential energy, displacement, and spring force?	ìt

The graphs both show a parabolic shape which indicates a squared polynomial relationship between the potential energy and the displacement as well as the spring force.

Data Table 1: Intro (SAMPLE ANSWER BELOW)

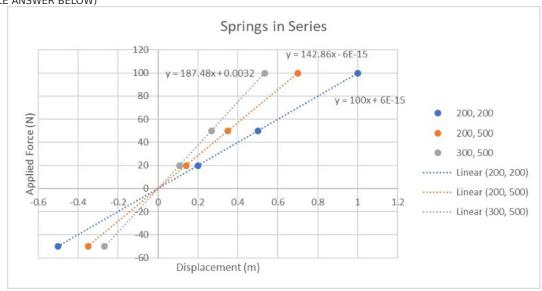

Applied Force (N)	Spring Force (N)	Displacement (m)
k = 200 N/m		
20	-20	0.100
50	-50	0.250
100	-100	0.500
-50	50	-0.250
k = 100 N/m		
20	-20	0.200
50	-50	0.500
100	-100	1.000
-50	50	-0.500
k = 500 N/m		·

20	-20	0.040
50	-50	0.100
100	-100	0.200
-50	50	-0.100

Data Table 2: Springs in Parallel (SAMPLE ANSWER BELOW)

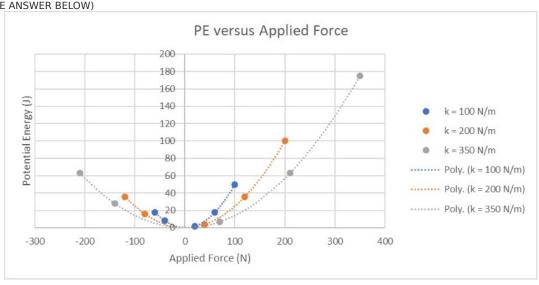
Applied Force (N)	Top Spring Force (N)	Bottom Spring Force (N)	Displacement (m)	Spring Constant (N/m)
Top Spring Cons	stant = 200 N/m, Bo	ttom Spring Constant =	200 N/m	
20	-10.0	-10.0	0.050	
50	-25.0	-25.0	0.125	400
100	-50.0	-50.0	0.250	400
-50	25.0	25.0	-0.125	
Top Spring Cons	stant = 200 N/m, Bo	ttom Spring Constant =	500 N/m	
20	-5.7	-14.3	0.029	
50	-14.3	-35.7	0.071	700
100	-28.6	-71.4	0.143	700
-50	14.3	35.7	-0.071	
Top Spring Cons	stant = 300 N/m, Bo	ttom Spring Constant =	500 N/m	
20	-7.5	-12.5	0.025	
50	-18.8	-31.3	0.063	800
100	-37.5	-62.5	0.125	000
-50	18.7	31.2	-0.063	

Graph 1: Spring Constant for Springs in Parallel (SAMPLE ANSWER BELOW)


Data Table 3: Springs in Series (SAMPLE ANSWER BELOW)

(S) LL / 1140	SWER BELOW)				Corina
Applied Force (N)	Left Spring Force (N)	Right Spring Force on Applied Force (N)	Right Spring Force on Left Spring(N)	Displacement (m)	Spring Constant (N/m)
Left Spring	Constant = 2	200 N/m, Right Spring Cor	nstant = 200 N/m		
20	-20	-20	20	0.200	
50	-50	-50	50	0.500	100
100	-100	-100	100	1.000	100
-50	50	50	-50	-0.500	
Top Spring	Constant = 2	00 N/m, Right Spring Con	stant = 500 N/m		
20	-20	-250	20	0.140	
50	-50	-50	50	0.350	143
100	-100	-100	100	0.700	143
-50	50	50	-50	-0.350	
Top Spring	Constant = 3	00 N/m, Right Spring Con	stant = 500 N/m		
20	-20	-20	20	0.107	188

50	-50	-50	50	0.267
100	-100	-100	100	0.533
-50	50	50	-50	-0.267


Graph 2: Spring Constant for Springs in Series (SAMPLE ANSWER BELOW)

Data Table 4: Energy (SAMPLE ANSWER BELOW)

Displacement (m)	Applied Force (N)	Spring Potential Energy (J)
Spring Constant = 100 N	J/m	·
0.200	20	2.0
0.600	60	18.0
1.000	100	50.0
-0.400	-40	8.0
-0.600	-60	18.0
Spring Constant = 200 N	I/m	
0.200	40	4.0
0.600	120	36.0
1.000	200	100.0
-0.400	-80	16.0
-0.600	-120	36.0
Spring Constant = 350 N	I/m	
0.200	70	7.0
0.600	210	63.0
1.000	350	175.0
-0.400	-140	28.0
-0.600	-210	63.0

Graph 3: Energy versus Force (SAMPLE ANSWER BELOW)

A mass on a spring is subject to Hooke's law. True False is the position where a spring is neither stretched nor compressed. Displacement Elastic limit Equilibrium

Competency Review

None of the above

Th	e indicates the stiffness of a spring.	
	applied force	
	spring constant	~
	o spring force	
(All of the above	
	o or more springs aligned in series or in parallel have a single equivalering constant.	ent
	○ True	~
	○ False	
An	y material that is subject to a restoring force is considered to be	
	springy	
(flexible	
	elastic	~
-	All of the above	
	e applied force points in the same direction as the restoring force of oke's law.	
	O True	
	False	✓
Th	e spring potential energy is calculated using the equation	
($U_{sp}=rac{1}{2}k\Delta x$	
($\bigcup \ U_{sp}=mgy$	
	$U_{sp}=rac{1}{2}k\Delta x^2$	~
	None of the above	

o sum	✓
difference	
product	
None of the above	
A spring of spring constant 25 N/m is hung	-
ttached to one end, causing a displaceme	-
	-
ttached to one end, causing a displaceme	-
attached to one end, causing a displacement m.	-
mttached to one end, causing a displacement m. 0.01	ent of the end of the spring of

Extension Questions

A spring on Earth has a 0.500 kg mass suspended from one end and the mass is displaced by 0.3 m. What will the displacement of the same mass on the same spring be on the Moon, where the acceleration due to gravity is one sixth that of Earth? Show your work. (SAMPLE ANSWER BELOW)

The spring constant is found from Hooke's law: F = mg = -kx, or k = mg/x = 0.5*9.8/0.3 = 16.33 N/m. The spring constant and mass won't change on the Moon, so the new displacement can be found using these constants and the new g = 9.8/6 = 1.63 m/s²: x = mg/k = 0.5*1.63/16.33 = 0.05 m. The spring will stretch 0.05 m or 5 cm on the Moon.