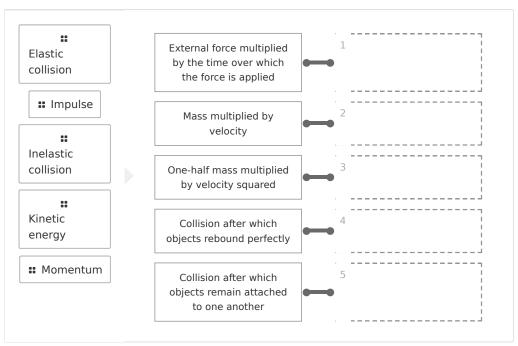
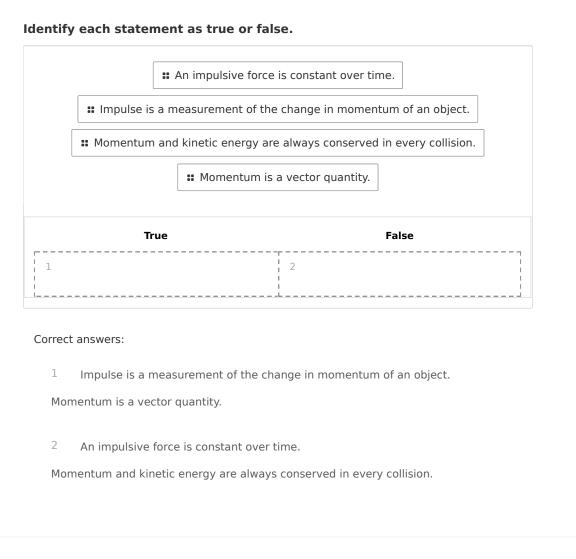
SI Physics - Full Discipline Demo

Conservation of Momentum - Digital


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo


Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Impulse 2 Momentum 3 Kinetic energy 4 Elastic collision
- 5 Inelastic collision

E

xploration	
The momentum of an object depends on the of the object.	
massvelocity	
both mass and velocityNone of the above	•
The impulse is measured by finding the area under the force - time curv	/e.
○ True	✓
○ False	

time duration	~
impulse	
momentum change	
 All of the above 	
The momentum of each individual o	object in an isolated system is
True	
○ False	✓
	uring which the interacting objects stick
together.	
○ True	
○ False	*
Momentum is conserved in both ela kinetic energy is conserved only in	
○ True	~
○ False	
SE 1 he result of colliding a moving curl higher mass? How is this supported	ing stone of lower mass with a stationary

The lower mass stone will slide backwards after the collision. This is supported by the negative vf and pf values recorded for Trial 3 in Data Table 3 of -0.56 m/s and -11.20 (kg·m/s) respectively.

How do the results of this simulation exercise support the law of conservation of momentum? Explain your answer.

The curling stones from the simulation support the law of conservation of momentum because the momentum of the colliding stones remained constant as displayed by the pi, net equaling the pf, net values in each trial.

A ball with a mass of 3 kg moving at 5 m/s collides with a 9 kg ball at rest. After the collision, the impacting (3 kg) ball bounces back at a speed of 2.5 m/s. How fast does the 9 kg ball move and in what direction?

 $p_{net,i} = m_1 v_{1,i} + m_2 v_{2,i} = 3 \text{ kg} * 5 \text{ m/s} + 9 \text{ kg} * 0 \text{ m/s} = 15 \text{ kg m/s}$

 $\mathsf{p}_{\mathsf{net},\mathsf{i}} = \mathsf{p}_{\mathsf{net},\mathsf{f}}$

 $p_{\text{net,f}} = 3 \text{ kg} * (-2.5 \text{ m/s}) + 9 \text{ kg} * v_{2,f} = -7.5 \text{ kg} \cdot \text{m/s} + 9 \text{ kg} \times v_{2,f} = 15 \text{ kg m/s}$

 $9 \text{ kg} * v_{2,f} = 22.5 \text{ kg m/s}$

Dividing both sides by 9 kg, this results in a velocity of 2.5 m/s moving in the original direction of the 3 kg ball's motion.

Data Table 1: Curling Ball Momentum Simulation

(SAMPLE ANSWER BELOW)

(SAMILE ANSWER BELOW)								
Trial	Stone Color	Mass (kg)	v _i (m/s)	pi (kg·m/s)	p _{i,net} (kg·m/s)	v _f (m/s)	p _f (kg·m/s)	p _{f,net} (kg·m/s)
1	Red	20	No sample answer	No sample answer	No sample answer	No sample answer	No sample answer	No sample answer
	Yellow	15	0	No sample answer		No sample answer	No sample answer	
2	Red	20	No sample answer	No sample answer	No sample answer	No sample answer	No sample answer	No sample answer
	Yellow	20	0	No sample answer		No sample answer	No sample answer	

3	Red	20	No sample answer					
	Yellow	25	0	No sample answer		No sample answer	No sample answer	

Competency Review

The units of momentum are	
○ kg m	
o m/s	
o kg m/s	✓
All of the above	
Impulse is calculated by multiplying average force by	
time duration	✓
 distance traveled 	
 change in momentum 	
 All of the above 	
The is a measurement of the change in momentum of an object.	
kinetic energy	
impulse	✓
velocity	
 All of the above 	
Momentum is conserved for any interaction.	
○ True	
False	✓

Kinetic energy is conserved for both elastic and inelastic collisions.	
True	
○ False	~
An explosion a type of reverse collision.	
elastic	
o inelastic	~
• interaction	
 All of the above 	
As the mass of an impactor (such as a marble rolling down an incline) increases, the of the impactor increases.	
momentum	
force	
impulse	
All of the above	✓
The mass of a marble is 0.003 kg and the velocity of the marble is 2 m/s. The momentum of the marble is kg m/s.	
0.002	
0.006	~
0 700	
None of the above	

Extension Questions

A ball bouncing against the ground and rebounding is an example of an elastic collision. Describe two different methods of evaluating this interaction, one for which momentum is conserved, and one for which momentum is not conserved. Explain your

answer. (SAMPLE ANSWER BELOW)

Momentum is not conserved if the system consists of only the ball, because the momentum of the ball changes before and after the collision, even if the speed is the same immediately before and

after the collision. The ball changes directions of motion, so its momentum is changed. Momentum is conserved if the system consists of the ball and the Earth together, because the momentum of the Earth is slightly altered by its interaction with the ball. The change is not observed because the mass of the Earth is so much larger than that of the ball, but it occurs nonetheless.

