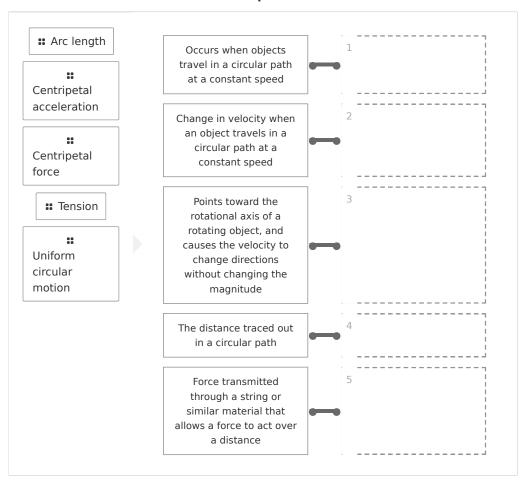
# SI Physics - Full Discipline Demo

## Centripetal Acceleration - Digital

### Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

**Instructor** Sales SI Demo

### Test Your Knowledge



#### Match each term with the best description.



#### Correct answers:

- 1 Uniform circular motion 2 Centripetal acceleration 3 Centripetal force
- 4 Arc length 5 Tension

#### Identify each statement as true or false.

## The arc length is equal to the subtended angle divided by the radius.

## The magnitude and direction of the tangential velocity of an object in uniform circular motion change over time.

## The speed of an object undergoing uniform circular motion can be determined using the circumference and the period of the motion.

## The tension of a swinging string can provide the centripetal force needed to keep an object on its circular path.

## False

#### Correct answers:

1

The speed of an object undergoing uniform circular motion can be determined using the circumference and the period of the motion.

The tension of a swinging string can provide the centripetal force needed to keep an object on its circular path.

2 The arc length is equal to the subtended angle divided by the radius.

The magnitude and direction of the tangential velocity of an object in uniform circular motion change over time.

### Exploration

During uniform circular motion, the magnitude and direction of the velocity change.

| <ul><li>True</li></ul>  |  |  |  |
|-------------------------|--|--|--|
| <ul><li>False</li></ul> |  |  |  |



| The term centripetal means                                                                  |          |
|---------------------------------------------------------------------------------------------|----------|
| <ul><li>circular</li></ul>                                                                  |          |
| o center-seeking                                                                            | <b>✓</b> |
| <ul><li>towards the margin</li></ul>                                                        |          |
| None of the above                                                                           |          |
| velocity is the velocity of an object moving in a circular path in uniform circular motion. |          |
| Tangential                                                                                  | <b>~</b> |
| Centripetal                                                                                 |          |
| <ul><li>Circular</li></ul>                                                                  |          |
| <ul> <li>None of the above</li> </ul>                                                       |          |
|                                                                                             |          |
| The centripetal force always points in the same direction as the centripe acceleration.     | tal      |
| ○ True                                                                                      | <b>~</b> |
| False                                                                                       |          |
|                                                                                             |          |
| For circular motion calculations, the angle is measured in units of                         |          |
| <ul><li>degrees</li></ul>                                                                   |          |
| <ul><li>radians</li></ul>                                                                   | <b>✓</b> |
| <ul><li>revolutions</li></ul>                                                               |          |
| <ul><li>None of the above</li></ul>                                                         |          |
|                                                                                             |          |



|                 | The of an object undergoing uniform circular motion can be determined using the circumference and the period of the motion.                                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <ul><li>acceleration</li></ul>                                                                                                                                                                                                                                       |
|                 | <ul><li>radius</li></ul>                                                                                                                                                                                                                                             |
|                 | ○ speed ✓                                                                                                                                                                                                                                                            |
|                 | None of the above                                                                                                                                                                                                                                                    |
|                 | provides the centripetal force needed to keep an object swinging on a string on its circular path.                                                                                                                                                                   |
|                 | <ul><li>Gravity</li></ul>                                                                                                                                                                                                                                            |
|                 | ○ Tension ✓                                                                                                                                                                                                                                                          |
|                 | • Velocity                                                                                                                                                                                                                                                           |
|                 | <ul> <li>None of the above</li> </ul>                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                      |
| Exerc<br>What w | as the effect of increasing the hanging mass on the centripetal force in Part 1 of this                                                                                                                                                                              |
|                 |                                                                                                                                                                                                                                                                      |
| As the          | hanging mass increases, the magnitude of the centripetal force increases proportionately.                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                      |
| Did incr        | reasing the mass of the rotating object affect its velocity in Part 2 of this exercise?                                                                                                                                                                              |
|                 |                                                                                                                                                                                                                                                                      |
|                 |                                                                                                                                                                                                                                                                      |
| consta          | nging mass determines the experimental centripetal force. Thus, the centripetal force is nt in Part 2. Due to the relationship $F_c = mv^2/r$ , if the mass increases, the velocity must se to maintain the constant centripetal force provided by the hanging mass. |



### What effect did increasing the radius of the rotating mass have on its velocity?

Increasing the radius increases the velocity of the rotating mass.

# Data Table 1: Varying Hanging Mass - Measurements and Calculations (SAMPLE ANSWER BELOW)

| Rotating<br>Mass (kg) | 0.025                                                                | Radius<br>(m)           | 2.00                  | Circumfe<br>(m)   | erence             | 12.57                 |            |
|-----------------------|----------------------------------------------------------------------|-------------------------|-----------------------|-------------------|--------------------|-----------------------|------------|
| Trial                 | Hanging Mass (kg)                                                    | Time -<br>10 rev<br>(s) | Time T -<br>1 rev (s) | Velocity<br>(m/s) | F <sub>c</sub> (N) | F <sub>g</sub><br>(N) | %<br>Error |
| 1                     | 0.070 Note: due to the nature of this sim, student answers will vary | 17.0                    | 1.70                  | 7.39              | 0.683              | 0.687                 | 0.54       |
| 2                     | 0.110                                                                | 13.5                    | 1.35                  | 9.31              | 1.083              | 1.079                 | 0.37       |
| 3                     | 0.150                                                                | 11.6                    | 1.16                  | 10.83             | 1.467              | 1.472                 | 0.31       |
| 4                     | 0.200                                                                | 10.1                    | 1.01                  | 12.44             | 1.935              | 1.962                 | 1.37       |

# Data Table 2: Varying Rotating Mass - Measurements and Calculations (SAMPLE ANSWER BELOW)

| Hanging<br>Mass (kg) | 0.140 Note: due to the nature of this sim, student answers will vary | Radius<br>(m)           | 2.00                  | Circumfe<br>(m)   | erence                | 12.57                 |            |
|----------------------|----------------------------------------------------------------------|-------------------------|-----------------------|-------------------|-----------------------|-----------------------|------------|
| Trial                | Rotating Mass (kg)                                                   | Time -<br>10 rev<br>(s) | Time T -<br>1 rev (s) | Velocity<br>(m/s) | F <sub>c</sub><br>(N) | F <sub>g</sub><br>(N) | %<br>Error |
| 1                    | 0.025                                                                | 12.0                    | 1.20                  | 10.47             | 1.371                 | 1.373                 | 0.19       |
| 2                    | 0.057                                                                | 18.2                    | 1.82                  | 6.90              | 1.359                 | 1.373                 | 1.07       |
| 3                    | 0.079                                                                | 21.3                    | 2.13                  | 5.90              | 1.375                 | 1.373                 | 0.11       |
| 4                    | 0.116                                                                | 25.9                    | 2.59                  | 4.85              | 1.365                 | 1.373                 | 0.59       |

# Data Table 3: Varying Radius - Measurements and Calculations (SAMPLE ANSWER BELOW)

| (SAIVIT LL      | ANSVILLI      | DLLOW)                                                               |                          |                      |                   |                       |                       |            |
|-----------------|---------------|----------------------------------------------------------------------|--------------------------|----------------------|-------------------|-----------------------|-----------------------|------------|
| Rotatin<br>(kg) | g Mass        | 0.025 Note: due to the nature of this sim, student answers will vary | Hanging                  | Mass (kg)            | 0.140             |                       |                       |            |
| Trial           | Radius<br>(m) | Time - 10 rev (s)                                                    | Time T<br>- 1 rev<br>(s) | Circumference<br>(m) | Velocity<br>(m/s) | F <sub>c</sub><br>(N) | F <sub>g</sub><br>(N) | %<br>Error |
| 1               | 0.27          | 4.6                                                                  | 0.46                     | 1.70                 | 3.69              | 1.259                 | 1.373                 | 8.30       |
| 2               | 0.42          | 5.6                                                                  | 0.56                     | 2.64                 | 4.71              | 1.322                 | 1.373                 | 3.76       |
|                 |               |                                                                      |                          |                      |                   |                       |                       |            |



| 3 | 0.68 | 6.9 | 0.69 | 4.27 | 6.19 | 1.410 | 1.373 | 2.64 |
|---|------|-----|------|------|------|-------|-------|------|
| 4 | 0.99 | 8.4 | 0.84 | 6.22 | 7.41 | 1.385 | 1.373 | 0.83 |

# Competency Review

| Uniform circular motion occurs when objects travel in constant                                                                                                         | i a circular path at a |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| <ul><li>velocity</li></ul>                                                                                                                                             |                        |
| <ul><li>direction</li></ul>                                                                                                                                            |                        |
| speed                                                                                                                                                                  | <b>~</b>               |
| All of the above                                                                                                                                                       |                        |
| The centripetal acceleration points towards the cente                                                                                                                  | er of the circle.      |
| ○ True                                                                                                                                                                 | ✓                      |
| • False                                                                                                                                                                |                        |
|                                                                                                                                                                        |                        |
| The centripetal acceleration is always to the tan                                                                                                                      | gential velocity.      |
| The centripetal acceleration is always to the tan  or perpendicular tangential                                                                                         |                        |
| perpendicular                                                                                                                                                          |                        |
| <ul><li>perpendicular</li><li>tangential</li></ul>                                                                                                                     |                        |
| <ul><li>perpendicular</li><li>tangential</li><li>central</li></ul>                                                                                                     |                        |
| <ul><li>perpendicular</li><li>tangential</li><li>central</li><li>All of the above</li></ul>                                                                            |                        |
| <ul> <li>perpendicular</li> <li>tangential</li> <li>central</li> <li>All of the above</li> </ul> The centripetal force is proportional to the                          |                        |
| <ul> <li>perpendicular</li> <li>tangential</li> <li>central</li> <li>All of the above</li> </ul> The centripetal force is proportional to the <ul> <li>mass</li> </ul> |                        |



| spring                                                                                           |                             |
|--------------------------------------------------------------------------------------------------|-----------------------------|
| gravitational                                                                                    | <b>~</b>                    |
| <ul><li>incline</li></ul>                                                                        |                             |
| <ul> <li>All of the above</li> </ul>                                                             |                             |
| The tension force is greater than the centripeta force apparatus.                                | al force in the centripetal |
| ○ True                                                                                           |                             |
| False                                                                                            | <b>~</b>                    |
| An object moving in uniform circular motion wit period of 0.4 s has a tangential velocity of     |                             |
| <ul><li>○ 4</li></ul>                                                                            |                             |
| 0 9                                                                                              | <b>~</b>                    |
| None of the above                                                                                |                             |
| The centripetal force acting on a 0.30 kg object velocity of 12 m/s in a 0.80 m radius circle is |                             |
| O 4.5                                                                                            |                             |
| I.                                                                                               |                             |
| <b>54</b>                                                                                        | <b>~</b>                    |
| <ul><li>54</li><li>380</li></ul>                                                                 | <b>~</b>                    |

The centripetal acceleration acting on a 0.30 kg object moving with a tangential velocity of 12 m/s in a 0.80 m radius circle is \_\_\_\_ m/s<sup>2</sup>.

| O 15                              |    |   |
|-----------------------------------|----|---|
| 0 180                             |    | ~ |
| O 480                             |    |   |
| <ul><li>None of the abo</li></ul> | ve |   |

### **Extension Questions**

For each of the following scenarios, describe the force providing the centripetal force for the motion:

- a. a car making a turn
- b. a child swinging around a pole
- c. a person sitting on a bench facing the center of a carousel
- d. a rock swinging on a string
- e. the Earth orbiting the Sun.

(SAMPLE ANSWER BELOW)

- a. static friction between the car tire and the road
- b. the pulling force of the child's arms
- c. the normal force of the bench and the person's back and/or the friction force of the bench seat and the person's bottom
- d. the tension of the string
- e. the gravitational force of the Sun on the Earth.

