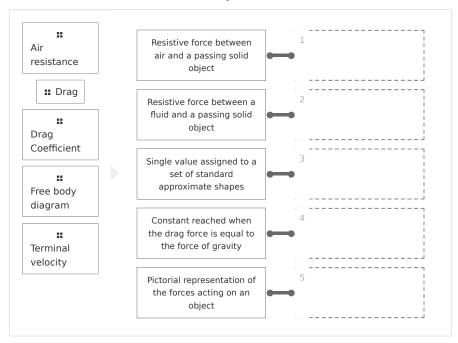
SI Physics - Full Discipline Demo

Air Resistance


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Physics - Full Discipline DemoCourseSI Physics - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Air resistance 2 Drag 3 Drag Coefficient 4 Terminal velocity
- 5 Free body diagram

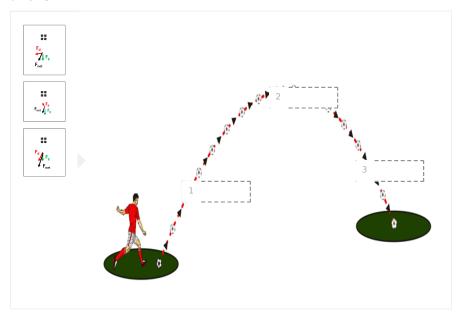
Categorize each statement as true or false.

	::
	oss-sectional area of an object does not influence the amount of drag the experiences.
	:: The drag force increases as the moving object's velocity increases.
# Th	e greater the cross-sectional area of an object, the larger its terminal velocity
	e greater the cross-sectional area of an object, the larger its terminal velocity he shape of an object influences the amount of drag the object experiences.

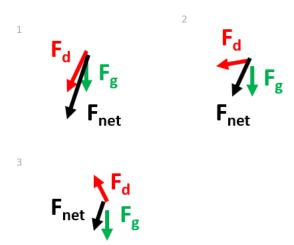
Correct answers:

 ${\mathbb 1}$ The drag force increases as the moving object's velocity increases.

The shape of an object influences the amount of drag the object experiences.


2

Neither the terminal velocity, nor the drag force depend on the mass of the object.


The cross-sectional area of an object does not influence the amount of drag the object experiences.

The greater the cross-sectional area of an object, the larger its terminal velocity.

Label the locations on the soccer ball trajectory with the correct force arrows.

Correct answers:

Exploration

The resistive force of drag occurs between a passing object and _____.

- air
- water
- molasses
- All of the Above

 same direction as 	
opposite direction of	~
 perpendicular direction to 	
None of the Above	
For moving objects with speeds less than a few hundred meters per second, drag increases the velocity.	
like the square root of	
like the	
like the square of	~
None of the Above	
The of the object influences the drag force.	
shape	
o cross-sectional area	
velocity	
All of the Above	~
When the drag force reaches the magnitude of the accelerating force tl	
object	1e
object ono longer accelerates	• ✓
no longer accelerates	
no longer acceleratesspeeds up	
no longer acceleratesspeeds upslows down	
no longer acceleratesspeeds upslows downNone of the Above	
 no longer accelerates speeds up slows down None of the Above The depends on the mass of the object.	
 no longer accelerates speeds up slows down None of the Above The depends on the mass of the object. drag force 	

	○ constant	
	o constantly changing	,
	constantly increasing	
	O None of the Above	
	The drag force increases the maximum height and maximum range traveled by a projectile.	d
	○ True	
	○ False •	•
	oes air resistance affect the trajectory of a projectile? Consider maximum he	ght
reached	ed, range, and trajectory symmetry.	
Air res traject	sistance shortens the range and maximum height reached by a projectile. The shap tory becomes scrunched in the presence of air resistance and does not make a symploic path, as it seen in the absence of air resistance.	
Air res traject parabo	sistance shortens the range and maximum height reached by a projectile. The shap tory becomes scrunched in the presence of air resistance and does not make a syn olic path, as it seen in the absence of air resistance.	nmetric,
Air res traject parabo Draw the free bo and its	sistance shortens the range and maximum height reached by a projectile. The shap tory becomes scrunched in the presence of air resistance and does not make a sym	ry, draw a height,
Air res traject parabo Draw the free bo and its	sistance shortens the range and maximum height reached by a projectile. The shap tory becomes scrunched in the presence of air resistance and does not make a symplotic path, as it seen in the absence of air resistance. The trajectory of a projectile in the presence of air resistance. On the trajectory of a projectile at three points: its initial position, its maximum of final position. Include the force due to gravity, the total drag force, and the	ry, draw a height,

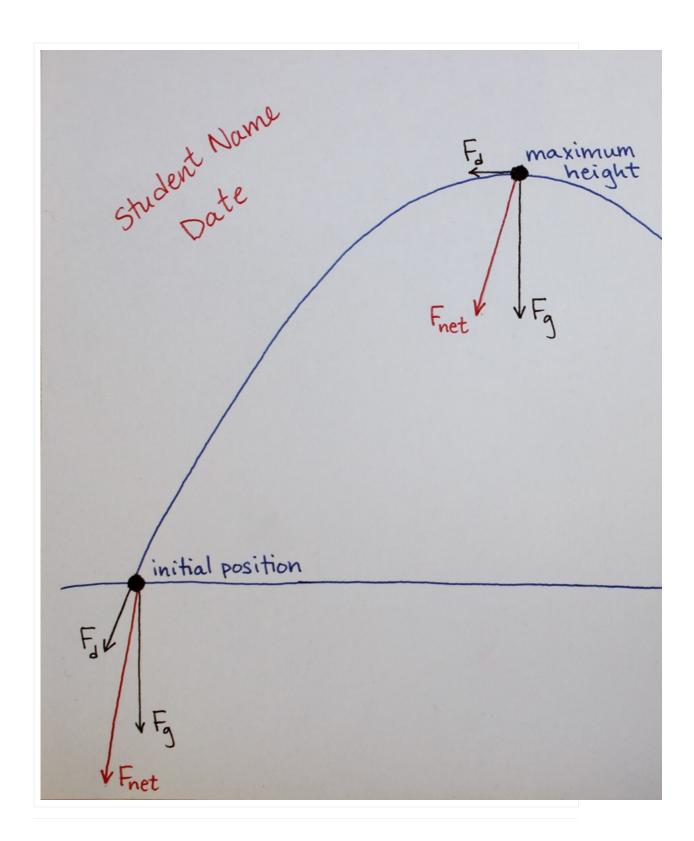
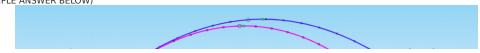




Photo 1: Trajectories of a Projectile With and Without Air Resistance (SAMPLE ANSWER BELOW)

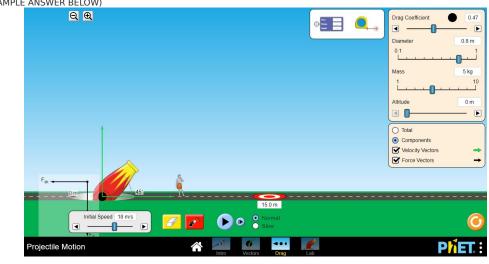
Data Table 1: Comparing Properties of Projectiles in the Presence and Absence of Air Resistance ${\sf N}$

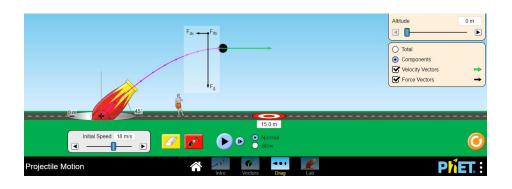
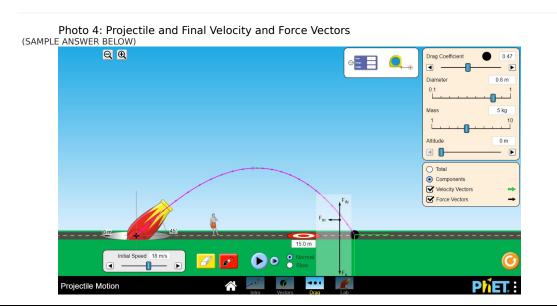
Resistance
(SAMPLE ANSWER BELOW)

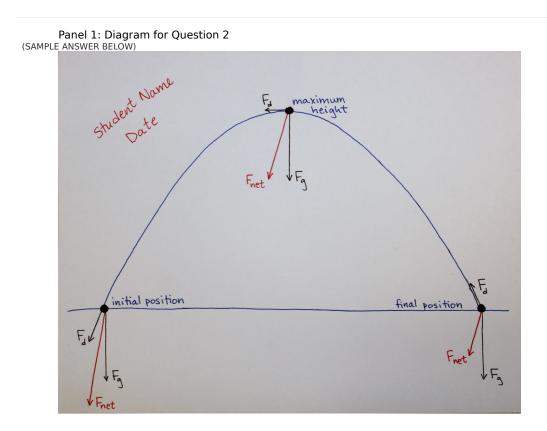
Dramarts (
Property	Description of Trajectory
Change in Trajectory	With no air resistance the range is longer and the maximum height is higher. The trajectory of the pumpkin without air resistance is symmetric whereas the trajectory with air resistance is not.
Change in Velocity Vector Components	The x-component of velocity remains constant throughout the projectile's flight. The y-component of velocity begins pointing upward, decreases to a magnitude of zero, then increases in magnitude, pointing in a direction opposite to its initial direction.
Change in Force Vector Components	The downward force due to gravity remains constant throughout the projectile's flight. The x-component of the drag force stays constant throughout the flight and always points in the opposite direction of the x-velocity component. The y-component of the drag force decreases in magnitude, reaches a value of zero at the trajectory

peak, then increases in magnitude. The y-component of the drag force always points in the opposite direction of the y-velocity component.

Photo 2: Projectile and Initial Velocity and Force Vectors (SAMPLE ANSWER BELOW)




Photo 3: Projectile and Velocity and Force Vectors at Maximum Height

Exercise 2 A sphere with a mass of 10 kg and radius of 0.5 m moves in free fall at sea level (where the air density is 1.22 kg/m³). If the object has a drag coefficient of 0.8, what is the object's terminal velocity? What is the terminal velocity at an altitude of 5,000 m, where the air density is 0.736 kg/m³? Show all calculations in your answer. The equation for terminal velocity is SQRT(2mg/CdpA). Here, $A = \pi r^2 = \pi (0.5 \text{ m})^2 = 0.785 \text{ m}^2$. Plugging in our known values at sea level, $v_{\text{terminal}} = \text{SQRT}((2 \times 10 \text{ kg} \times 9.81 \text{ m/s}^2)/(0.8 \times 1.22 \text{ kg/m}^3 \times 0.785 \text{ m}^2) = 16.0 \text{ m/s}$. At an altitude of 5,000 m, we have $v_{\text{terminal}} = \text{SQRT}((2 \times 10 \text{ kg} \times 9.81 \text{ m/s}^2)/(0.8 \times 0.736 \text{ kg/m}^3 \times 0.785 \text{ m}^2)) = 20.6 \text{ m/s}$. A sphere with a mass of 5 kg and radius of 0.8 m travels at a speed of 15 m/s at sea level. If the drag coefficient is 0.5, what is the drag force the object experiences? What is the drag force if the sphere moves with a speed of 20 m/s?

The equation for drag force is $F_d = \frac{1}{2} C_d \rho A v^2$. The area $A = \pi r^2 = \pi (0.8 \text{ m})^2 = 2.01 \text{ m}^2$. With a speed of 15 m/s, the drag force is $F_d = \frac{1}{2} \times 0.5 \times 1.22 \text{ kg/m}^3 \times 2.01 \text{ m}^2 \times (15 \text{ m/s})^2 = \textbf{138 N}$. With a speed of 20 m/s, the drag force is $F_d = \frac{1}{2} \times 0.5 \times 1.22 \text{ kg/m}^3 \times 2.01 \text{ m}^2 \times (20 \text{ m/s})^2 = \textbf{245 N}$.

Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation.

The two objects experience the same drag force. Thus, the equations used to find the drag force for each object can be set equal to each other: $F_{d1} = F_{d2}$, or $\frac{1}{2}$ $C_{d1}\rho_1A_1v_1^2 = \frac{1}{2}$ $C_{d2}\rho_2A_2v_2^2$. Since the velocities are the same and the objects are at the same elevation, the air density and velocities cancel. Further, the constant factor of $\frac{1}{2}$ cancels. The equation then becomes: $C_{d1}A_1 = C_{d2}A_2$. The area A is a function of the diameter, $A = \pi r^2 = \pi (d/2)^2$. The equation then becomes: $C_{d1} \pi (d_1/2)^2 = C_{d2} \pi (d_2/2)^2$, or $C_{d1}d_1^2 = C_{d2}d_2^2$. If Object 1 has twice the diameter of Object 2, $d_1 = 2d_2$. The equation then becomes: $C_{d1}(2d_2)^2 = C_{d2}d_2^2$, or $4C_{d1}d_2^2 = C_{d2}d_2^2$. Canceling d_2 , this becomes $4C_{d1} = C_{d2}$. Thus, we see **the drag coefficient of Object 2 is larger** than the drag coefficient of Object 1.

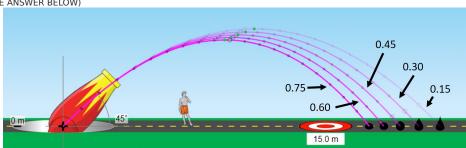
The drag force is not affected by mass. Does your data in Data Table 4 support or refute this statement? Explain your answer using Newton's second law, F=ma.

The data does supports this statement, though it is not obvious at first glance. The change in trajectory is due to Newton's second law which, rearranged, states a = F/m. Thus, the acceleration of a projectile changes inversely with mass, even when the drag force is unchanged. This change in acceleration alters the trajectory of the projectile. So, with a larger mass, there is a smaller net acceleration, allowing the projectile to move further and higher.

Data Table 2: Changing the Diameter of a Projectile

(SAMPLE ANSWER BELOW) Cross-Sectional Area Flight Time Flight Range Maximum Height Initial Drag Force Diameter (m) (s) (m) (m) (m²)(N) 0.2 2.14 22.02 0.03 2.59 5.61 0.4 2.07 19.71 5 2 7 0.13 10.35 0.6 1.98 16.91 4.81 0.28 23.28 8.0 1.87 14.22 4.32 0.50 41.39 1.76 11.91 3.84 0.79 64.68 1.0

Photo 5: Projectiles and Trajectories with Varied Diameters (SAMPLE ANSWER BELOW)



Data Table 3: Changing the Drag Coefficient of a Projectile (SAMPLE ANSWER BELOW)

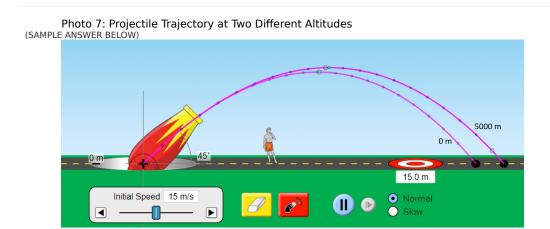
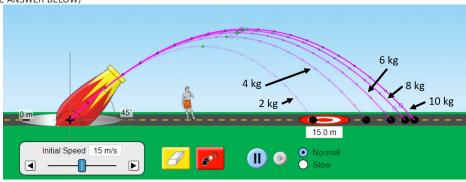

(SAMPLE ANSWER BELOW)				
Drag Coefficient (m)	Flight Time (s)	Flight Range (m)	Maximum Height (m)	Initial Drag Force (N)
0.15	2.12	21.54	5.54	4.04
0.30	2.09	20.33	5.36	8.08
0.45	2.06	19.26	5.20	12.13
0.60	2.03	18.33	5.05	16.17
0.75	2.00	17.49	4.91	20.21

Photo 6: Projectiles and Trajectories with Varied Drag Coefficients $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$



Data Table 4: Changing Mass of a Projectile (SAMPLE ANSWER BELOW)

Mass (m)	Flight Time (s)	Flight Range (m)	Maximum Height (m)
2	1.87	14.34	4.34
4	2.00	17.49	4.91
6	2.05	18.94	5.15
8	2.07	19.78	5.28
10	2.09	20.33	5.36

Photo 8: Projectiles and Trajectories with Varied Masses $_{\mbox{\scriptsize (SAMPLE}}$ ANSWER BELOW)

Competency Review The ____ is a single value encompassing the influence of the shape of an object on its motion through a medium. drag force air resistance drag coefficient None of the Above Air resistance is another name for drag when an object is moving through the air. True False The drag force is ____ to the cross-sectional area of the object. proportional inversely proportional not related None of the Above

The drag force is to the density of the object.	
proportional	
inversely proportional	
not related	~
None of the Above	
For an object in free-fall, when the drag force equals the, the reaches terminal velocity.	object
air resistance	
weight of the object	~
drag coefficient	
None of the Above	
The more massive an object, the larger its terminal velocity. True	~
• False An object in free-fall will experience its maximum drag force at th	•
maximum height of its trajectory.	C
True	
○ False	~
•	
Air resistance makes the shape of a projectile's trajectory a less to perfect parabola.	han
	han ✓

The larger the drag coefficient, the the maximum height of a projectile.	
○ higher	
○ lower	✓
more unpredictable	
None of the Above	
Projectiles launched at higher altitudes (lower air densities) have ranges.	
○ longer	✓
shorter	
unchanged	
None of the Above	
Mass does not influence the drag force experienced by an object.	
○ True	✓
○ False	
The terminal velocity is inversely proportional to the square root of the	
drag coefficient	
 density of the medium 	
cross-sectional area	
All of the Above	✓
ı	

Extension Questions

Describe all the factors you should consider when designing a rocket that you want to experience minimal air resistance. $(SAMPLE\ ANSWER\ BELOW)$

The drag coefficient needs to be a small as possible, which means considering the shape of the rocket, something similar to an airfoil or bullet is preferable. The cross-sectional area of the rocket should also be minimized to reduce the air resistance experienced by the rocket. The rocket should not travel extremely fast either, because the air resistance is proportional to the square of the velocity of the rocket. The rocket should travel through high-altitude air if possible, because the air at high altitudes has lower density, which decreases the air resistance.

