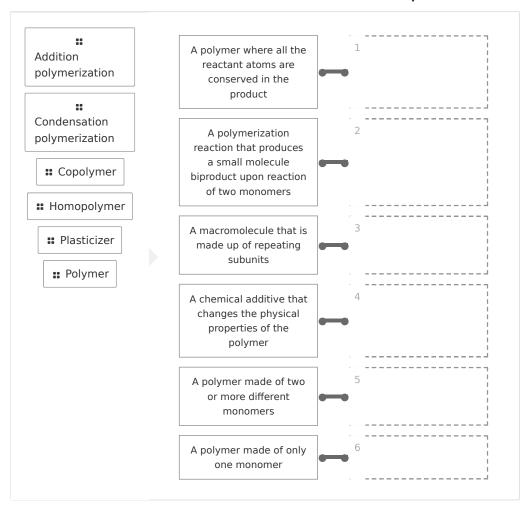
SI Organic Chemistry - Full Discipline Demo

Polymers

Final Report - Answer Guide

Institution Science Interactive University


SessionSI Organic Chemistry - Full Discipline DemoCourseSI Organic Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match the definition with each term that fits the best description.

Correct answers:

- 1 Addition polymerization 2 Condensation polymerization 3 Polymer
- 4 Plasticizer ⁵ Copolymer ⁶ Homopolymer

Classify the following compounds as either a polymer or small molecule.

Monomers made of conjugated systems or aromatic rings make more rigid polymers.

A plasticizer added to a rigid polymer will make the polymer less rigid.

Long flexible monomers polymerize into stiffer polymers.

Plasticizers disrupt the intermolecular forces between polymer strands.

A plasticizer added to a flexible polymer will make the polymer less flexible.

Polymerization reactions often involve olefins as the functional group that forms bonds between monomers.

True False

Correct answers:

1

Polymerization reactions often involve olefins as the functional group that forms bonds between monomers.

A plasticizer added to a rigid polymer will make the polymer less rigid.

Plasticizers disrupt the intermolecular forces between polymer strands.

Monomers made of conjugated systems or aromatic rings make more rigid polymers.

2 Long flexible monomers polymerize into stiffer polymers.

A plasticizer added to a flexible polymer will make the polymer less flexible.

Exploration

Polymers are macromolecules that have repeating subunits called monomers.	
│ ○ True	~
□ False	
Plasticizers are chemical additives that change the properties of a polymer and make them more	
ophysical; flexible	✓
molecular; ridged	
chemical; elastic	
None of the above	
Nylon, a polyamide, is synthesized by reacting a dicarboxylic acid with a diol. True False	·
A longer reaction time between polyvinyl acetate and sodium tetraborate will make the polymer	te
more fluid	
more flexible	
less flexible	✓
None of the above	
The role of glycerol when mixing starch-glycerol is to	
o act as a plasticizer	~
remove water	
make the polymer crystalline	
None of the above	

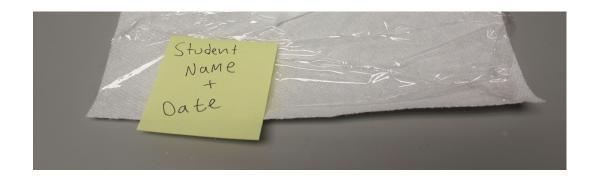
Exercise 1

Explain what happened chemically that caused the differences between the initial flexibility and texture of the polymer with a short reaction time compared to the polymer with a long reaction time?

The short reaction time polymer is initially soft and highly flexible because it has had only a short amount of time for the sodium tetraborate to integrate into the polymer structure. After long exposure to sodium tetraborate, the polymer becomes harder and less stretchy as the tetraborate molecules bind the polymer strands together.

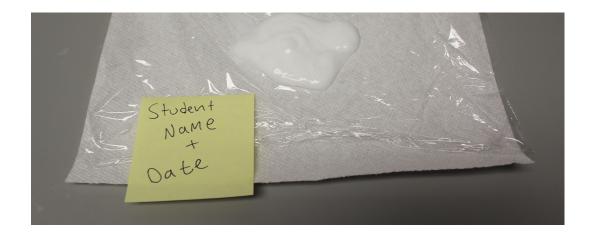
Based on your results in this exercise, what chemical was causing the change in the physical properties of the polymer over time?

Sodium tetraborate was the chemical that resulted in a change in the physical properties of the polymer. A longer reaction time allowed more tetraborate to displace the acetate in the polymer, making it more rigid.


Panel 1: Observations of Polymer with Brief Reaction Time (SAMPLE ANSWER BELOW)

Polymer is watery, barely holds together, a "goop," highly flexible.

Photo 1: Polymer with Brief Reaction Time (SAMPLE ANSWER BELOW)


Panel 2: Observations of Polymer with Long Reaction Time $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$

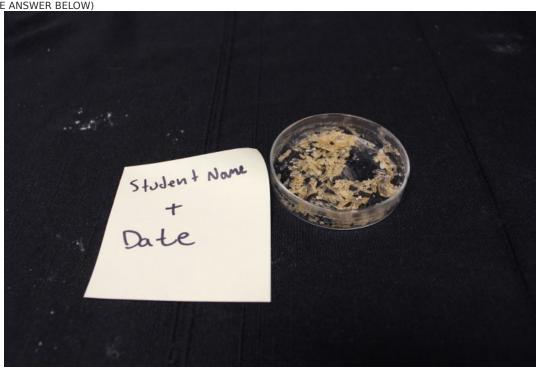
Consistency of "gak"--more rubbery than watery, still moldable but holds its form better. Firm, can bounce, can "break" if quickly pulled apart.

Photo 2: Polymer with Long Reaction Time (SAMPLE ANSWER BELOW)

Exercise 2

Describe the physical properties of the two polymers. Use descriptor words such as bendable, rigid, stretch, elastic, firm, shapeable, etc.

The first polymer is flexible and has plastic properties. You can bend and prod it using the glass rod. It is firm but not brittle. The rigid, brittle polymer made without glycerol doesn't have a plasticizer present to give it plastic properties.



What effects did glycerol have in the formation of the polymers? Reference Photos 3-4 and Panel 3 in your explanation.

Glycerol acts as a plasticizer in the formation of the polymer--it allows the polymer to be more flexible instead of brittle.

Photo 3. Starch-glycerol polymer (SAMPLE ANSWER BELOW)

Panel 3: Physical properties of polymers (SAMPLE ANSWER BELOW)

The polymer that is made from the hydrolysis of starch and added glycerol is an opaque white semi-solid. It is more flexible than the other polymer made in Exercise 2. It has a waxy and malleable property.

The polymer that is made from just the hydrolysis of starch is crystalline and very brittle. It cannot be molded without breaking.

Competency Review

is a macromolecule	
 has repeating subunits 	
is made of monomers	
All of the above.	→
Polystyrono is a made from	m styrono in 2/n) nolymorization
Polystyrene is a made from	m styrene in a(n) polymerization
	m styrene in a(n) polymerization
reaction.	m styrene in a(n) polymerization
copolymer; addition	

o rigid	
flexible	~
stable	·
• crystalline	
Plasticizers change the physical properties of a polyr	mer to
increase elasticity	
increase flexibility	
 decrease brittleness 	
All of the above	~
	synthesized by a
The white polymer with variable reaction times was seaction between and polyvinyl acetate; sodium tetraborate	synthesized by a ✓
eaction between and	
polyvinyl acetate; sodium tetraborate starch; glycerol styrene; vinyl chloride	
polyvinyl acetate; sodium tetraborate starch; glycerol	
polyvinyl acetate; sodium tetraborate starch; glycerol styrene; vinyl chloride	
polyvinyl acetate; sodium tetraborate starch; glycerol styrene; vinyl chloride None of the above The polyvinyl acetate-Borax polymer became more	•
eaction between and polyvinyl acetate; sodium tetraborate starch; glycerol styrene; vinyl chloride None of the above The polyvinyl acetate-Borax polymer became more during its synthesis.	•
polyvinyl acetate; sodium tetraborate starch; glycerol styrene; vinyl chloride None of the above The polyvinyl acetate-Borax polymer became more during its synthesis. transparent; carbon dioxide	•

plastic		~
crystalline		
oviscous of a liquid		
 None of the above. 		
The flexibility of a polymer polymer.	linker directly affects the flexibility of the	
○ True		~
- False		
The nolymer synthesized fi	om acid hydrolysis of starch without glycero	
has a structure.	om acid flydrolysis of starch without grycero	Ī
flexible		
○ rigid		~
viscous		

Extension Questions

Like starches, proteins are a biological polymer. Research the bonding involved in forming a protein polymer:

- 1. Are they homopolymers or copolymers?
- 2. Are they addition polymers or condensation polymers?
- 3. What type of intermolecular forces hold together the protein "secondary structures" known as alpha-helices and beta-sheets?
- 4. Do these secondary structures make the polymer more or less flexible?

(SAMPLE ANSWER BELOW)

Proteins are made up of various amino acid monomers that bond together by amide bonds.

1. Copolymers (some students may argue homopolymers because they are all amino acids, but amino acids are different from each other)

- 2. Condensation--they lose water when the amide bond forms.
- 3. Alpha helices and beta sheets are intermolecularly hydrogen bonded to keep their shape.
- 4. While the amide bonds themselves allow amino acids to rotate freely, the secondary structures' intermolecular hydrogen bonds make them more rigid.

