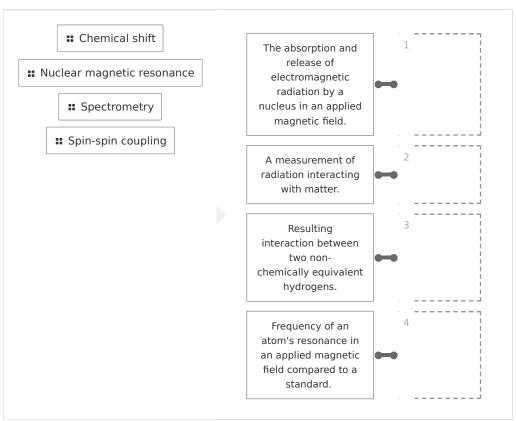
SI Organic Chemistry - Full Discipline Demo

Nuclear Magnetic Resonance

Final Report - Answer Guide


Institution Science Interactive University

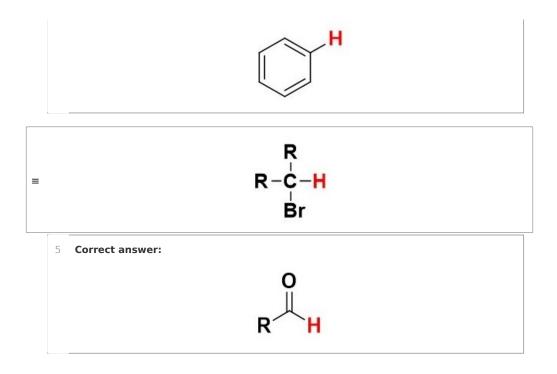
SessionSI Organic Chemistry - Full Discipline DemoCourseSI Organic Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match the term with the best description.

Correct answers:


- 1 Nuclear magnetic resonance 2 Spectrometry 3 Spin-spin coupling
- 4 Chemical shift

Order the hydrogens of the molecules from most shielded to most deshielded.

≡		R H
	1	Correct answer:
		(sp³)C− <mark>H</mark>
=		R R C=C R H
	2	Correct answer:
		R
		R-C-H Br
		Br
=		(sp³)C− <mark>H</mark>
	3	Correct answer:
		R R
		c=c'
		R H
=		H
	4	Correct answer:

Exploration

Energy is directly proportional to frequency in the electromagnetic spectrum.

○ True ✓ False

An emission spectrum is detected when a sample is excited from the ground state to the excited state.

TrueFalse

The isotopes and are NMR-active nuclei.	
○ ¹H; ¹²C	
○ ² H; ¹² C	
○ ¹H; ¹³C	✓
○ ² H; ¹³ C	
When an atom is placed in a magnetic field, aligning with a magnetic field is higher in energy than aligning against the magnetic field.	ld
○ True	
○ False	~
A group is electronegative and would cause nearby protons to be shifted downfield.	
o carbonyl (C=0)	
chloro (CI)	
amine (N)	
All of the above	✓
The closer a proton is to an electronegative group, the more shielded it be.	will
O True	
○ False	✓
A decided the sector of the se	
A ring has degree(s) of unsaturation.	
○ 0	
0 1	~
0 2	
3	

Carbon NMR uses the _ isotope.	$_{}$ isotope, which is less abundant than the 1 H
○ ¹² C	
○ 13C	✓
□ 14C	
 None of the above 	
Exercise 1	
What were the common function	nal group patterns observed in NMR Spectra 1?
In Spectra 1 there was an ethyl ar	nd methyl group.
In the NMR Spectra 3, what was functional group caused it to be	the most deshielded hydrogen's chemical shift and what that downfield?
La NIMB and a track of a label in	Ideal budge and had a sharping blift of 0.7 mag. This budge are
was attached to a carbonyl makin	elded hydrogen had a chemical shift of \sim 9.7 ppm. This hydrogen ig it an aldehyde.
_	of unsaturation for Spectra 1, what functional groups hat functional groups account for the unsaturation in
Spectra 1 has a DOU of 0 with no funct	tional groups accounting for the unsaturation.
Spectra 2 has a DOU of 6, and the func	ctional groups that account for them are an aromatic ring (4), a carbonyl

Spectra 3 has a DOU of 1 and the functional group that accounts for the unsaturation is the aldehyde (1).

Data Table 1: Peak Assignment for NMR Spectra 1 $(SAMPLE \ ANSWER \ BELOW)$

57.11.12.71.10.11.21.7		
Degree of Unsaturation	0	
Peak (ppm)	Integration	Multiplicity
1.8	2	pentet (p)
3.25	3	singlet (s)
3.4	2	triplet (t)
3.5	2	triplet (t)

Photo 1: Work to solve NMR Spectra 1 (SAMPLE ANSWER BELOW)

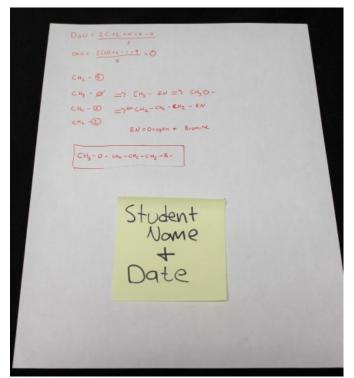
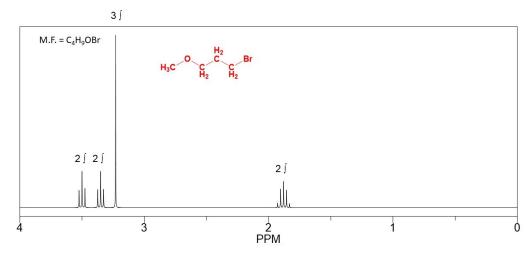
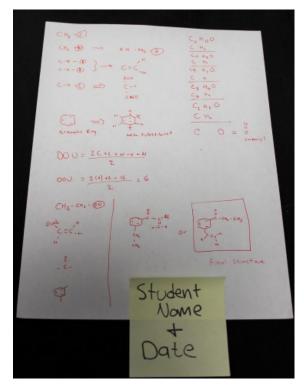
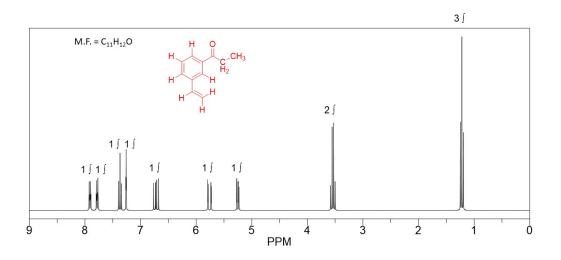



Photo 2: NMR Spectra 1 with structure (SAMPLE ANSWER BELOW)

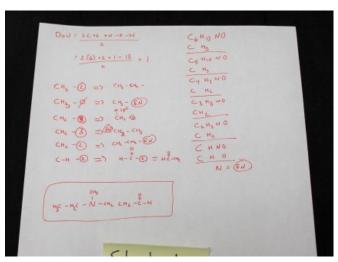


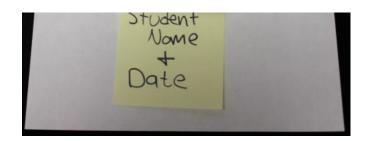
Data Table 2: Peak Assignment for NMR Spectra 2 (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)		
Degree of Unsaturation	6	
Peak (ppm)	Integration	Multiplicity
1.25	3	triplet (t)
3.5	2	quartet (q)
5.25	1	doublet of doublets (dd)
5.75	1	doublet of doublets (dd)
6.7	1	doublet of doublets (dd)
7.3	1	singlet (s)
7.4	1	triplet (t)
7.8	1	doublet (d)
7.9	1	doublet (d)


Photo 3: Work to solve NMR Spectra 2

(SAMPLE ANSWER BELOW)


Photo 4: NMR Spectra 2 with structure (SAMPLE ANSWER BELOW)


Data Table 3: Peak Assignment for NMR Spectra 3 (SAMPLE ANSWER BELOW)

Degree of Unsaturation	1	
Peak (ppm)	Integration	Multiplicity
1.0	3	triplet (t)
2.2	3	singlet (s)
2.5	2	quartet (q)
2.7	2	quartet (q)
3.8	2	triplet (t)
9.7	1	triplet (t)

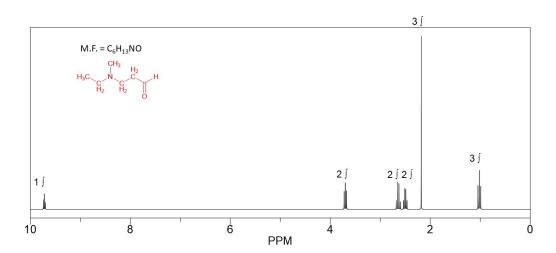
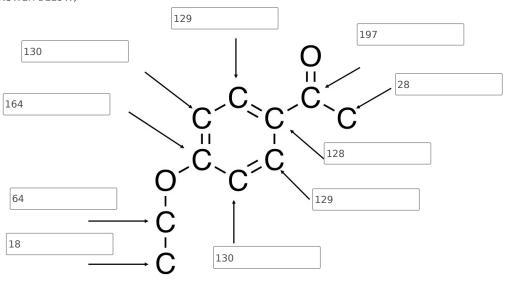

Photo 5: Work to solve NMR Spectra 3 (SAMPLE ANSWER BELOW)

Photo 6: NMR Spectra 3 with structure (SAMPLE ANSWER BELOW)

Exercise 2
What functional group(s) correspond to the degrees of unsaturation?
The fountional management is to fountion decrease of management and the convertion in a (4) and the
The functional groups responsible for the degrees of unsaturation are the aromatic ring (4) and the ketone (1).
Based on the chemical shift assignment in Image Labeling 1, how many chemically equivalent carbons are in the spectra? What are their chemical shifts?

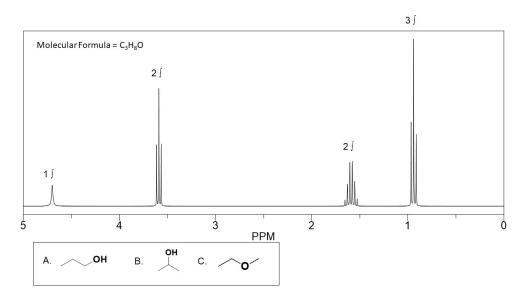


There are 2 sets of chemical equivalent carbons in the spectra. They have a chemical shift of 129 and 130 ppm.

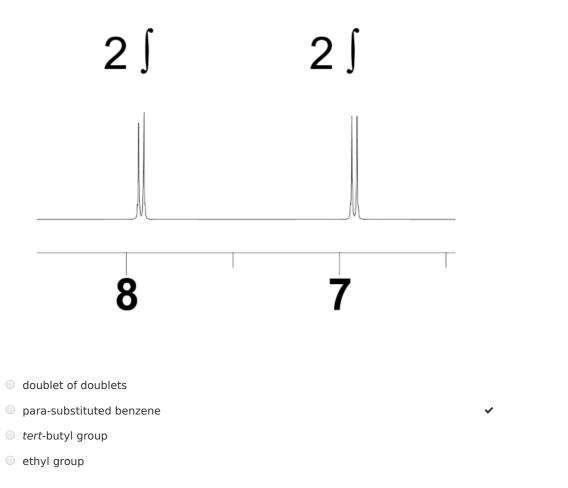
Data Table 4: Peak Labeling of Carbon-NMR (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)	
Degree of Unsaturation	5
Peak	Signal (ppm)
1	18
2	28
3	64
4	127
5	129
6	130
7	165
8	197

Photo 7: Carbon-13 NMR Structure for Labeling (SAMPLE ANSWER BELOW) $\,$


Competency Review

Nuclear magnetic resonance spectrometry uses waves.	
○ infared	
O radio	✓
○ X-rays	
None of the above	
Atoms with an odd mass number have an inherent spin.	
□ True	~
False	
Chemically equivalent hydrogens have the same chemical shift.	
○ True	✓
False	
Calculating a molecule's degree of unsaturation accounts for in temperature.	the
O double bonds	
 triple bonds 	
rings	
All of the above	~
The functional group is electronegative and causes the hydrogen be deshielded.	en to
bromine	
alkene	
aromatic ring	
All of the above	✓


The peak shown in the image below has a multiplicity of _____. singlet doublet triplet None of the above The molecule represented by the formula C_5H_8O has ____ degree(s) of saturation. 0 0 1 None of the above

Structure ____ best matches the ¹H NMR spectra below.

- 0 A
 - B
 - C
 - None of the Above

What common functional group is represented by this ¹H-NMR pattern?

Extension Questions

A common technique for imaging the human body is magnetic resonance imaging (MRI). This technique uses radio waves in the same frequency as nuclear magnetic resonance. Research MRI and answer the following questions:

What atom does MRI use for imaging the body? What molecule that contains this atom is most abundant in the human body? Does an MRI detect emission or absorption of electromagnetic radiation?

(SAMPLE ANSWER BELOW)

MRI is a 1 H-NMR technique. It uses excited hydrogen atoms (also referred to as protons) and measures the release of electromagnetic energy. The molecule that is most common containing hydrogen is water (1 O) as it makes up approximately 60% of the human body by weight. An MRI excites the water molecules and detects the emission of energy as the atoms relax.

