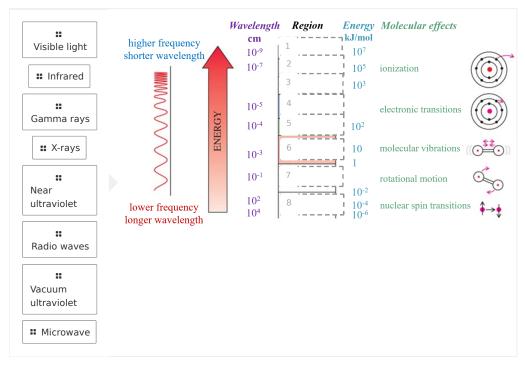
SI Organic Chemistry - Full Discipline Demo

Infrared Spectroscopy

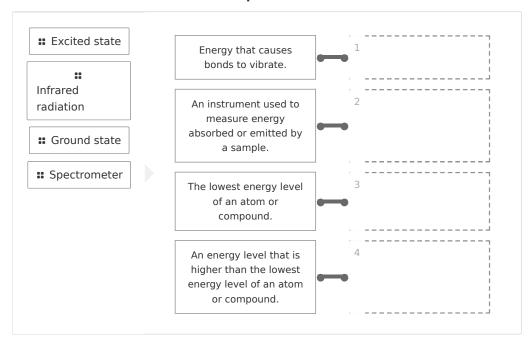
Final Report - Answer Guide


Institution Science Interactive University

SessionSI Organic Chemistry - Full Discipline DemoCourseSI Organic Chemistry - Full Discipline Demo

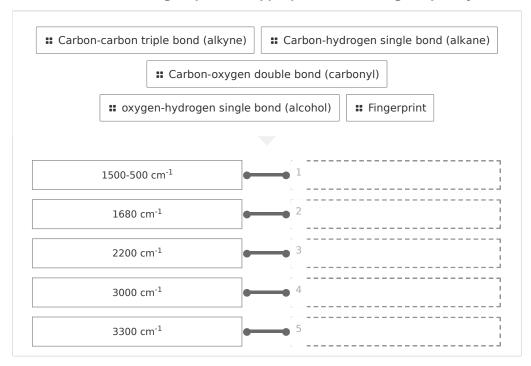
Instructor Sales SI Demo

Test Your Knowledge


Label the diagram with the wavelength categories.

Correct answers:

- 1 Gamma rays 2 X-rays 3 Vacuum ultraviolet 4 Near ultraviolet
- 5 Visible light 6 Infrared 7 Microwave 8 Radio waves


Match each term to the best description.

Correct answers:

- 1 Infrared radiation 2 Spectrometer 3 Ground state
- 4 Excited state

Match each functional group to the appropriate stretching frequency.

Correct answers:

- 1 Fingerprint 2 Carbon-oxygen double bond (carbonyl)
- 3 Carbon-carbon triple bond (alkyne) 4 Carbon-hydrogen single bond (alkane)
- 5 oxygen-hydrogen single bond (alcohol)

Exploration

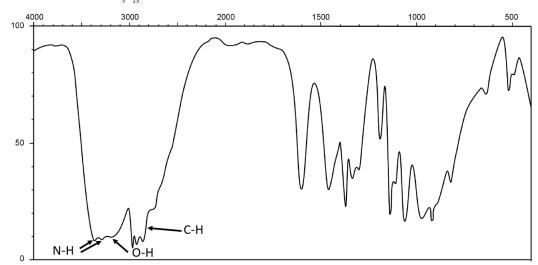
Spectroscopy utilizing infrared light provides information related to the _____ of a compound.

- chemical environment
- vibrational energy
- molecular weight
- All of the above

	ι.
O True	~
O False	
A carbon-carbon triple bond requires more energy to vicarbon double bond.	brate than a carbon-
○ True	*
○ False	
The most common frequency in organic chemistry is the	e
carbon-carbon double bond	
carbon-carbon single bond	
 carbon-oxygen single bond 	
None of the above	~
A carbon-carbon double bond stretching frequency is in range.	ı the cm ⁻¹
O 3200-3000	
0 1800-1600	✓
1500-1000	
 None of the above 	
Electron withdrawing groups weaken bonds, causing a measured wavenumber.	decrease in the
	decrease in the

If an aliphatic C=O peak is located at about 1715 cm, ⁻¹ its aromatic counterpart would be located at cm. ⁻¹		
O 1745		
1715		
○ 1685 ~		
○ 1615		
A(n) is the functional group indicated by a strong, sharp peak at 2155 and an additional peak at 3305.		
nitrile		
 carboxylic acid 		
○ aldehyde		
terminal alkyne		
XERCISE $f 1$		
Infrared spectroscopy is a qualitative technique used to identify the functional groups present rather than connectivity. This is why two isomers would be indistinguishable in infrared spectroscopy.		
xplain how infrared spectroscopy is used to differentiate between an alkene and a ketone.		
Alkenes will produce a peak between 1620–1680 cm-1, whereas ketones have a peak between 1680–1750 cm-1.		

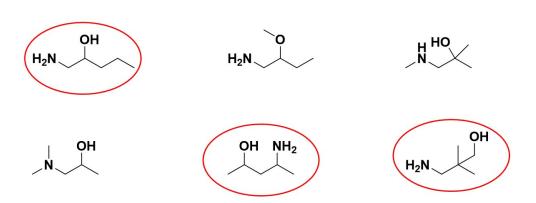
How would the stretching frequency of an O-H change if the oxygen was bonded to an alkane (alcohol) vs. a carbonyl (carboxylic acid)?

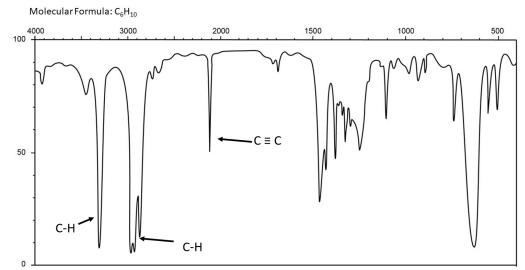

The O-H stretch would be higher in energy for an alcohol than a carboxylic acid because the

carbonyl would weaken the O-H bond due to resonance. The observed effect would be a shift in

Photo 1: Infrared Spectra 1 (SAMPLE ANSWER BELOW)

Molecular Formula: C₅H₁₃NO

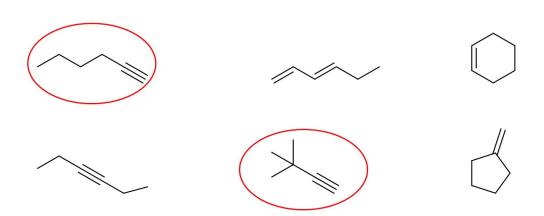

the IR frequency to a lower frequency for the carboxylic acid.

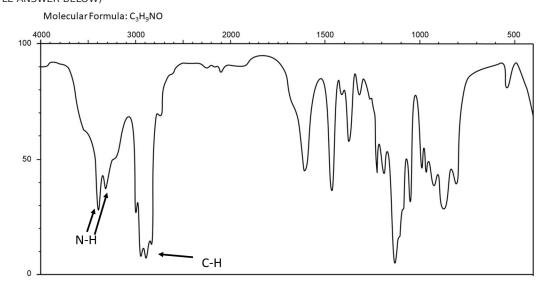

Data Table 1: Peak Assignments for Infrared Spectra 1 (SAMPLE ANSWER BELOW)

Peak (cm ⁻¹)	Bond	Functional Group
3300, 3350	N-H	amine (1°)
3200-3400	О-Н	alcohol
2950	С-Н	alkane

Photo 2: Circle Structure(s) that Match the Spectra (SAMPLE ANSWER BELOW)

Photo 3: Infrared Spectra 2 (SAMPLE ANSWER BELOW)

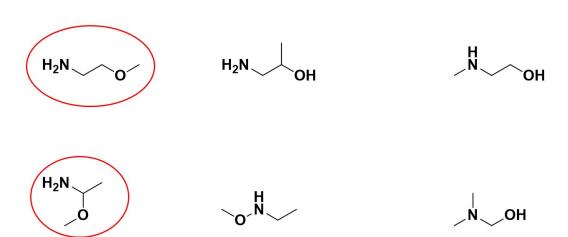



Data Table 2: Peak Assignments for Infrared Spectra 2 (SAMPLE ANSWER BELOW)

(SAPIT LE ANSWER BLEOW)		
Peak (cm ⁻¹)	Bond	Functional Group
3300	С-Н	alkyne
3000-2800	С-Н	alkane
2150	C-C	triple bond

Photo 4: Circle Structure(s) that Match the Spectra (SAMPLE ANSWER BELOW)

Photo 5: Infrared Spectra 3 (SAMPLE ANSWER BELOW)



Data Table 3: Peak Assignments for Infrared Spectra 3 (SAMPLE ANSWER BELOW)

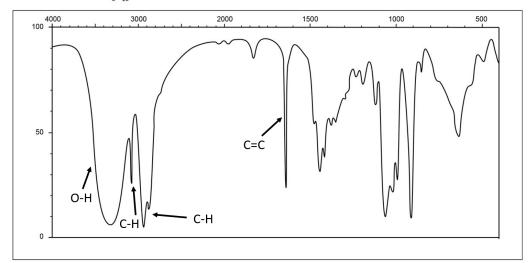
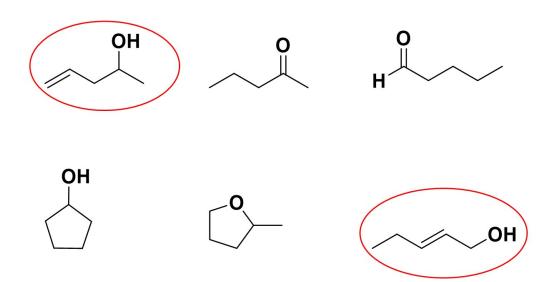

Peak (cm ⁻¹)	Functional group	Functional group
3400, 3300	N-H	amine 1°
2750-2900	C-H	alkane

Photo 6: Circle the Structure(s) that match the spectra $(\mbox{\scriptsize SAMPLE ANSWER BELOW})$

Photo 7: Infrared Spectra 4 (SAMPLE ANSWER BELOW)

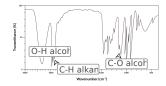
 $Molecular Formula \colon\thinspace C_5 H_{10} O$

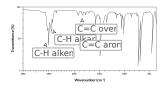


Data Table 4: Peak Assignments for Infrared Spectra 4 (SAMPLE ANSWER BELOW)

Peak (cm ⁻¹)	Functional Group	
3100-3600	O-H (alcohol)	
3000	C-H (alkene)	
2800-2950	C-H (alkane)	
1650	C=C (alkene)	

Photo 8: Circle the Structure(s) that Match the IR spectra $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$


Exercise 2
What is the most productive place in an infrared spectrum for examining what kinds of unctional groups are in the analyzed molecule? Explain your answer.
0 / 10000 Word Limit
What are the main differences in an infrared spectrum of an alkene vs. an alkane?
0 / 10000 Word Limit


What is the main giveaway that an infrared spectrum is of an aromatic ring instead of a simple alkene?

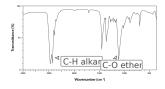

Photo 9: Spectra A (SAMPLE ANSWER BELOW)

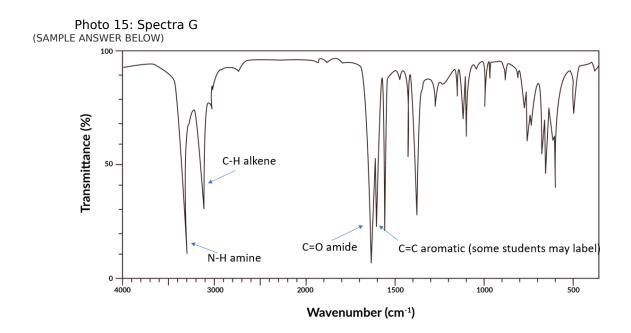
Photo 10: Spectra B (SAMPLE ANSWER BELOW)

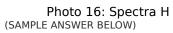
Photo 11: Spectra C (SAMPLE ANSWER BELOW)

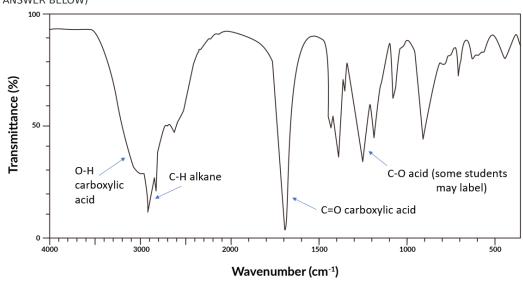
Data Table 5: Matching Spectra A-C (SAMPLE ANSWER BELOW)

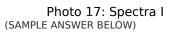
Spectra	Molecule Identity
A	2-butanol
В	toluene
С	dihexyl ether

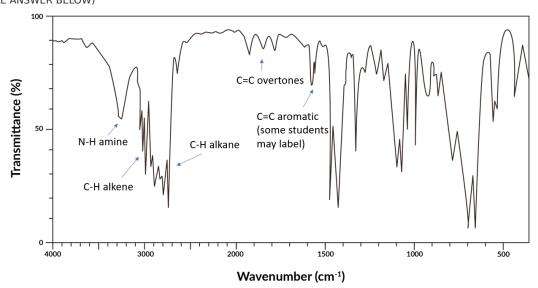
Data Table 6: Spectra D Peaks (SAMPLE ANSWER BELOW)


Peak (cm ⁻¹)	Bond	Functional Group
~3100	С-Н	alkene
~2950	С-Н	alkane


~1650	C=C	alkene
Data Table 7: S	pectra E Peaks	
Peak (cm ⁻¹)	Bond	Functional Group
~2890	C-H	alkane
Data Table 8: Sp SAMPLE ANSWER BELOW)	pectra F Peaks	
Peak (cm ⁻¹)	Bond	Functional Group
~3300	C-H	alkyne
-2950	C-H	alkane
-2120	C≡C	alkyne
	1-hexyne	
_	hy is this so unusual in	for an organic molecule. What peak is missing n infrared spectrometry? Does it make sense
		0 / 10000 Word Limit
Vhat common peak is nd amides?	s shared by infrared sរុ	pectra of carboxylic acids, aldehydes, ketones,
		0 / 10000 Word Limi




What peaks easily differentiate between carboxylic acids, aldehydes, ketones, and amides?



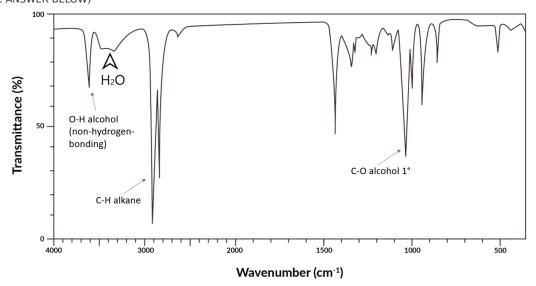
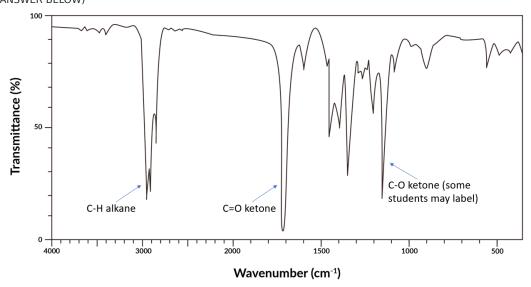
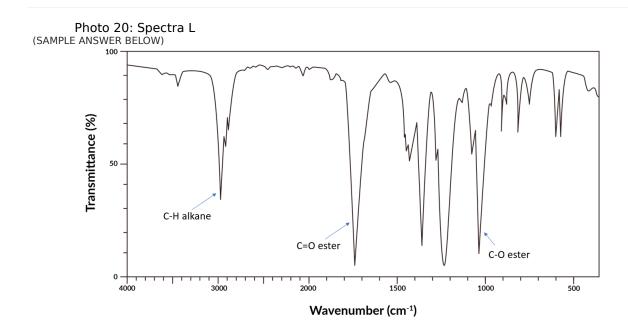
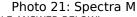


Photo 18: Spectra J (SAMPLE ANSWER BELOW)




Data Table 10: Matching Spectra G-J (SAMPLE ANSWER BELOW)


Spectrum	Molecule Identity	

G	benzamide
Н	pentanoic acid
1	n-methyl-benzyl
J	cyclohexanol

Photo 19: Spectra K (SAMPLE ANSWER BELOW)

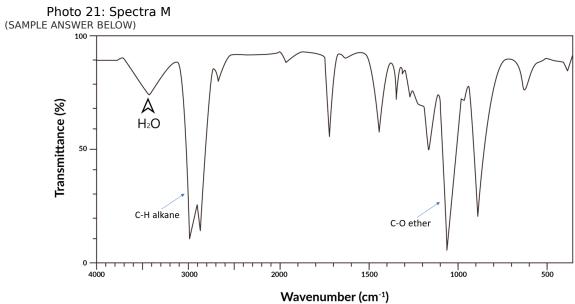
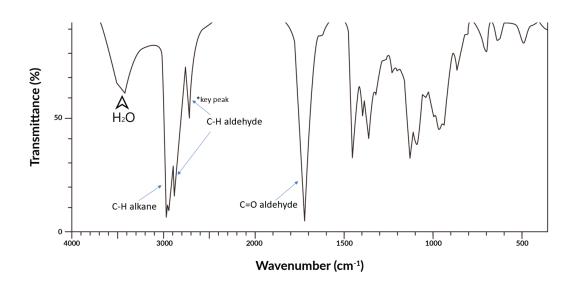



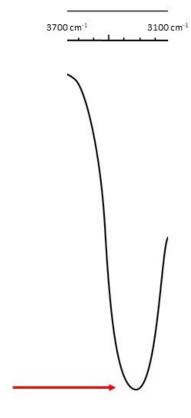
Photo 22: Spectra N (SAMPLE ANSWER BELOW)

Data Table 11: Matching Spectra K-N (SAMPLE ANSWER BELOW)

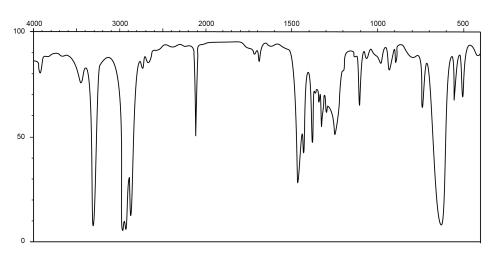
(SAMI EL AMSTER BELOTI)	
Spectrum	Molecule Identity
K	2-heptanone
L	ethyl acetate

M	tetrahydrofuran
N	pentanal

Competency Review

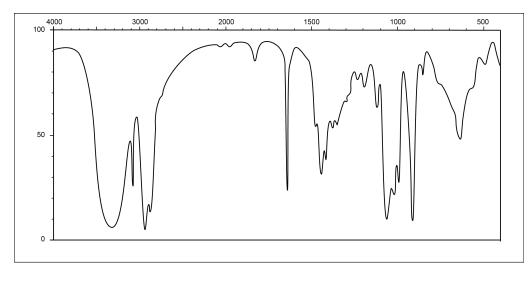

Electromagnetic radiation located in the covalent bonds.	ne region is required to vibrate
o infrared	✓
ultraviolet	
o visible	
 None of the above 	
Spectroscopy uses radiation from the dits interactions with matter.	electromagnetic spectrum to study
○ True	•
False	
The functional group requires the	e most energy to vibrate the bond.
The functional group requires the alcohol (O-H) alkane (C-H) amine (N-H) alkene (C-H)	e most energy to vibrate the bond.
alcohol (O-H) alkane (C-H) amine (N-H)	•
alcohol (O-H) alkane (C-H) amine (N-H) alkene (C-H) A bond vibration frequency is directly between the bonded atoms.	•
alcohol (O-H) alkane (C-H) amine (N-H) alkene (C-H) A bond vibration frequency is directly between the bonded atoms. molecular weight	•
 alcohol (O-H) alkane (C-H) amine (N-H) alkene (C-H) A bond vibration frequency is directly between the bonded atoms. molecular weight 	•

broad.		
○ True	~	
○ False		
A primary amine (R - NH_2) will have only one stretching frequency in an infrared spectra.		
True		
○ False	~	
An infrared spectrum can be used to distinguish between two isomers.		
○ True		
○ False	~	



The peak represented in the image is a _____ stretching frequency.

- C-H (alkane)
- О-Н
- C=C (alkene)
- None of the above


The infrared spectra in the image below contains a(n) _____ stretching frequency.

- alkyne
- C-H (alkyne)
- C-H (alkane)
- All of the above

In the provided spectra below, the carbon-carbon double bond has a peak appearing at ____ cm⁻¹.

- 3350
- 2900
- 0 1680
- None of the above

Extension Questions

Thalidomide is a drug that exists as two enantiomers. See below for the structure of Thalidomide.

- (R)-Thalidomide
- N...()=0
- (S)-Thalidomide
- A) If infrared spectra were obtained for both enantiomers, could you determine which structure matches which spectrum?
- B) Predict the defining peaks present in an infrared spectrum of Thalidomide.

(SAMPLE ANSWER BELOW)

- A) Infrared spectra of both (R) and (S) Thalidomide contain the same functional groups, and thus would not be able to be differentiated.
- B) Thalidomide will have a C=O (amide) peak, C=C (aromatic) peaks with overtones, an N-H peak, and C-H (alkane and alkene) peaks.