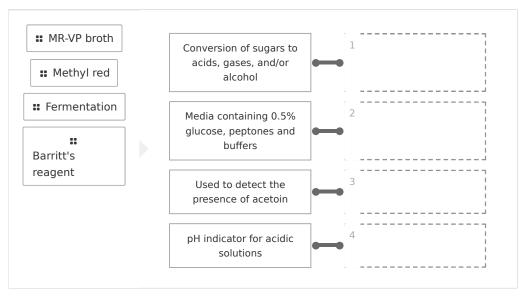
SI Microbiology - Full Discipline Demo

Methyl Red and Voges-Proskauer Testing

Final Report - Answer Guide


Institution Science Interactive University

SessionSI Microbiology - Full Discipline DemoCourseSI Microbiology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

1 Fermentation 2 MR-VP broth 3 Barritt's reagent 4 Methyl red

Determine whether each statement is true or false.

::

The Voges-Proskauer test is designed to identify microbes that ferment glucose via the 2, 3-butanediol pathway.

Acetoin turns yellow in the presence of Barritt's reagents.

::

The methyl red test is designed to identify microbes that perform mixed-acid fermentation to metabolize carbohydrates.

::

Mixed-acid fermenting microbes increase the pH of buffered culture media compared to other fermentative organisms.

True	False
1	2
i	Ī
I I	I

Correct answers:

1

The methyl red test is designed to identify microbes that perform mixed-acid fermentation to metabolize carbohydrates.

The Voges-Proskauer test is designed to identify microbes that ferment glucose via the 2, 3-butanediol pathway.

2 Acetoin turns yellow in the presence of Barritt's reagents.

Mixed-acid fermenting microbes increase the pH of buffered culture media compared to other fermentative organisms.

Exploration

Mixed-acid fermentation produces	
acetic acid	
ethanol	
hydrogen gas	
All of the above	•
Methyl red is a pH indicator that turns red below pH	
◎ 4.4	~
5.5	
6.7	
◎ 8.0	
Acetoin turns in the presence of Barritt's reagents.	
yellow	
orange	
o red	~
green	
Exercise 1	
Which of the bacteria tested in this exercise ferment glucose via the fermentation pathway? Explain how your results recorded in Data of your conclusion.	
E. coli ferments glucose via the mixed-acid fermentation pathway as in results for the methyl red test recorded in Data Table 1 and Photo 1. The mixed-acid fermentation process lowered the buffered MR-VP media phoresulting in the media turning red when methyl red dye was added. So significant acids to lower the pH of the buffered MR-VP media, resulting orange-yellow upon the addition of methyl red dye.	e acid byproducts of the I that <i>E. coli</i> was cultured in epidermidis did not produce

Which of the bacteria tested in this exercise ferment glucose via the 2,3-butanediol pathway? Explain how your results recorded in Data Table 1 and Photo 2 led to your conclusion.

S. epidermidis ferments glucose via the 2,3-butanediol pathway as indicated by the positive results for the Voges-Proskauer test recorded in Data Table 1 and Photo 2. The acetoin precursor of 2,3-butanediol produced during fermentation of the MR-VP media reacted with the Barritt's reagents to form a red layer in the test tube. *E. coli* did not produce 2,3-butanediol during fermentation of the MR-VP media resulting in only yellow colored media after the addition of Barritt's reagents to the test tube.

Data Table 1: MR-VP Results

(SAMPLE ANSWER BELOW)

Microbe	Methyl red result	Voges-Proskauer result
Escherichia coli	Positive	Negative
Staphylococcus epidermidis	Negative	Positive

Photo 1: Methyl Red Test Results (SAMPLE ANSWER BELOW)

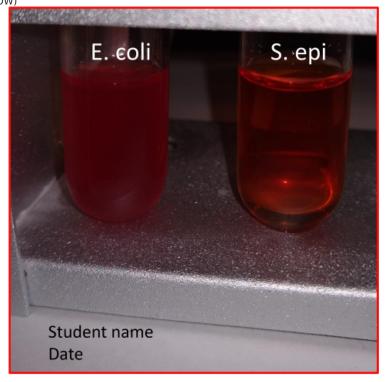
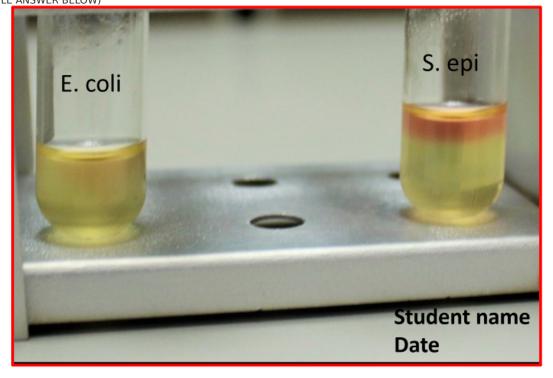
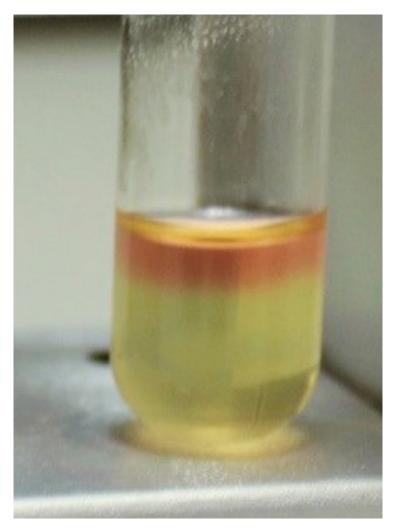



Photo 2: Voges-Proskauer Test Results (SAMPLE ANSWER BELOW)



Competency Review Mixed-acid fermentation produces ____ molecule(s) of acid for each molecule of glucose metabolized. one two three four MR-VP broth contains ____. 0.5% glucose peptones buffers All of the above When cultured in the laboratory, mixed-acid fermenting microbes lower the pH of buffered culture media more than other fermentative organisms. True False

2,3-Butanediol fermentation does not produce acids as byproducts and does not significantly decrease the pH of buffered media.				
○ True	✓			
○ False				
Barritt's reagents are used to detect the presence of, a precursor o	æ			
2,3-butanediol.	•			
acetic acid				
acetoin	•			
○ lactic acid				
ethanol				
Cultures for methyl red and Voges-Proskauer testing should be incubate for 48 hours in	d			
broth tubes	~			
agar plates				
 stab tubes 				
motility media				

The test tube in the photo below represents a positive result for a Voges-Proskauer test.

_ T	'n	

False

E. coli ferments carbohydrates via the ____ pathway.

- mixed-acid
- 2,3-butanediol
- both mixed-acid and 2,3-butanediol
- None of the above

S. epidermidis does not ferment carbohydrates.		
True		
○ False	~	

Extension Questions

A microbiology student mistakenly used unbuffered nutrient broth instead of MR-VP broth when performing methyl red testing on *S. epidermidis* and *E. coli*. Apply your knowledge of methyl red testing to predict how the student's results would be impacted by the broth substitution. (SAMPLE ANSWER BELOW)

Because the nutrient broth was unbuffered, the fermentation byproducts of both *E. coli* and *S. epidermidis* could significantly lower the pH of the broth and result in methyl red dye turning red while performing the methyl red test. These results would indicate that both microbes were mixed-acid fermenters.

