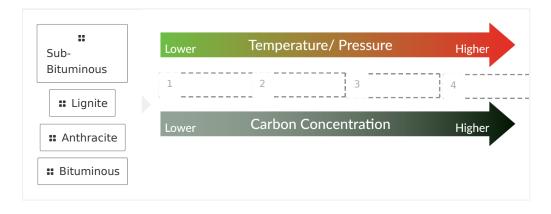
# SI Geology - Full Discipline Demo

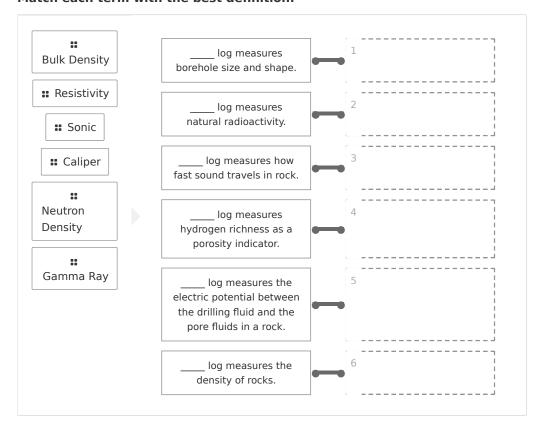

## Geologic Resources

### Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Geology - Full Discipline DemoCourseSI Geology - Full Discipline Demo

**Instructor** Sales SI Demo

### Test Your Knowledge




#### Correct answers:

1 Lignite 2 Sub-Bituminous 3 Bituminous 4 Anthracite



#### Match each term with the best definition.



#### Correct answers:

- 1 Caliper 2 Gamma Ray 3 Sonic 4 Neutron Density
- <sup>5</sup> Resistivity <sup>6</sup> Bulk Density

# **Exploration**

#### What are REEs?

- Rare Electrical Elements
- Regular Earth Elements
- Rare Earth Elements
- Regular Electrical Elements



| as _ | al is formed in deposition-dominated, oxygen-poor environments such<br>                                                                                                           | 1        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | shallow marine environments                                                                                                                                                       |          |
|      | desert environments                                                                                                                                                               |          |
|      | volcanic environments                                                                                                                                                             |          |
|      | swamp environments                                                                                                                                                                | <b>~</b> |
| The  | transformation from peat into coal is known as                                                                                                                                    |          |
|      | migration                                                                                                                                                                         |          |
|      | catagenesis                                                                                                                                                                       |          |
|      | coalification                                                                                                                                                                     | <b>~</b> |
| 0    | metagenesis                                                                                                                                                                       |          |
|      | at geophysical log measures the natural radioactivity of rock units?                                                                                                              |          |
| 1    | Caliper log  Gamma ray log                                                                                                                                                        | <b>~</b> |
| 1    | Resistivity log                                                                                                                                                                   | •        |
|      | Density log                                                                                                                                                                       |          |
|      | Density log                                                                                                                                                                       |          |
|      |                                                                                                                                                                                   |          |
| Wha  | at is the purpose of geophysical logs utilized in resource exploration?                                                                                                           |          |
| Wha  | Geophysical logs utilized in resource exploration?  Geophysical logs provide real-time images of the Earth's interior to identify mineral resources.                              |          |
| Wha  | Geophysical logs provide real-time images of the Earth's interior to identify mineral                                                                                             |          |
| Wha  | Geophysical logs provide real-time images of the Earth's interior to identify mineral resources.  Geophysical logs are used to measure the distance between resource deposits and |          |

# Exercise 1



| Talc $(Mg_3Si_4O_{10}(OH)_2)$ is commonly used in various cosmetics. What physical properties of talc make it an ideal ingredient in makeup?                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
| As you saw in this exercise, corundum ( $Al_2O_3$ ) is a very hard mineral. Based on your results, what other mineral from the exercise could be useful as an abrasive, such as in sand paper? |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |

# Data Table 1: Unknown Minerals Identification (SAMPLE ANSWER BELOW)

| Minoral Cample | · ,                                                  | Ctrook       | Hardness | Other Distinctive Branerties    | Minoral Namo  |
|----------------|------------------------------------------------------|--------------|----------|---------------------------------|---------------|
| Mineral Sample | Color/Clarity                                        | Streak       | пагинезз | Other Distinctive Properties    | Milleral Name |
| 1              | White or colorless/<br>transparent to<br>translucent | White        | 3        | Effervesces in acid             | Calcite       |
| 2              | White or colorless/<br>transparent to<br>translucent | No<br>streak | 7        | Hard; looks greasy              | Quartz        |
| 3              | Gray to black/opaque                                 | Dark<br>gray | 6        | Magnetic and heavy              | Magnetite     |
| 4              | White or colorless/<br>transparent to<br>translucent | White        | 2.5      | Tastes like salt; very light    | Halite        |
| 5              | Grayish<br>blue/opaque                               | No<br>streak | >6.5 (9) | Very hard; some surfaces glossy | Corundum      |
| 6              | White or pale green/opaque                           | White        | <2.5 (1) | Feels like soap                 | Talc          |

# Data Table 2: Household Products and Their Descriptions (SAMPLE ANSWER BELOW)

| Product Name    | Description                          |
|-----------------|--------------------------------------|
| Antacid Tablets | White and chalky. Fizzes in acid     |
| Baby Powder     | White and very soft. Repels water    |
| Glass Plate     | Semi-hard and you can see through it |
| Magnet          | Dark gray. Magnetic                  |
| Nail File       | Dark colored. Very hard and gritty   |



| Table Salt | Clear and light. Tastes salty |
|------------|-------------------------------|

# Data Table 3: Minerals and Their Corresponding Products (SAMPLE ANSWER BELOW)

Mineral Name Product Name

Calcite Antacid tablets

Quartz Glass plate

Quartz
Glass plate
Magnetite
Halite
Table salt
Corundum
Nail file
Talc
Baby powder

### Exercise 2

| List the samples according which experienced the highest heat and pressure, | with o | one l | eing |
|-----------------------------------------------------------------------------|--------|-------|------|
| the lowest amount of heat/pressure and three being the highest.             |        |       |      |

Describe how increasing heat and pressure change the properties of coal, using your observations of the samples in this exercise as examples.

### Data Table 4: Coal Properties and Identification

(SAMPLE ANSWER BELOW)

| (SAITI LL A | ANSWER BELOW  | ! )             |                                 |                |                    |
|-------------|---------------|-----------------|---------------------------------|----------------|--------------------|
| Sample      | Color         | Texture         | Appearance                      | Density (g/mL) | Type of Coal       |
| 1           | Black         | Hard and brittl | Shiny, but leaves dust on hands | Variable       | Bituminous<br>Coal |
| 2           | Dark<br>Brown | Crumbles easily | Few small plant fragments       | Variable       | Lignite            |
| 3           | Black         | Very hard and s | Very glassy                     | Variable       | Anthracite         |



## Exercise 3

| List the lithologies (rock types) present on your well log from the most radioactive (1) to the least radioactive (4).                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On the well log, the first track on the left (dashed line) is the caliper, which gives the diameter of the borehole. This is important for recognizing collapsed or "caved" zones (where the caliper line moves to the far right). What numbered sections on your well log correspond to a collapsed/caved reading? |
|                                                                                                                                                                                                                                                                                                                     |
| What numbered sections have the best reservoir potential, and what rock types correspond with these sections? Explain your reasoning.                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                     |
| What causes shale zones to have false porosity?                                                                                                                                                                                                                                                                     |



| What other factors might geologists                             | consider when assessing reservoir potential?                 |
|-----------------------------------------------------------------|--------------------------------------------------------------|
|                                                                 |                                                              |
|                                                                 |                                                              |
|                                                                 |                                                              |
|                                                                 |                                                              |
|                                                                 |                                                              |
| Data Table 6: Description of Geo                                | physical Logs                                                |
| SAMPLE ANSWER BELOW) Type of Geophysical Log (Curve)            | Description of What the Log Measures                         |
| Caliper                                                         | Borehole size and shape                                      |
| Gamma Ray                                                       | Natural radioactivity (Ur, Th, 40K)                          |
| leutron Porosity                                                | Hydrogen richness (H2O, HCO3)                                |
| <u> </u>                                                        | Rock density (g/ml)                                          |
| ensity                                                          | Nock delisity (g/IIII)                                       |
| ○ True                                                          | <b>✓</b>                                                     |
| False                                                           | •                                                            |
|                                                                 |                                                              |
| True or False?                                                  |                                                              |
| The properties of minerals have valuable resources in different | re no significant impact on their utilization as industries. |
| O True                                                          |                                                              |
| ○ False                                                         | <b>✓</b>                                                     |
| '                                                               |                                                              |
| Which geological process pr<br>fuels, such as coal, oil, and i  | imarily contributes to the formation of fossil natural gas?  |
| <ul><li>Metamorphism</li></ul>                                  |                                                              |
| Volcanic activity                                               |                                                              |
| Organic decomposition                                           | <b>~</b>                                                     |
| Frosion and weathering                                          |                                                              |



| Geophysical logs offer insights into subsurface properties like rock type, and fluid content, and they are read by interpreting the recorded change                                                                                                                                                                                                                |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| neasurement values.                                                                                                                                                                                                                                                                                                                                                | .3 111                |
| <ul><li>True</li></ul>                                                                                                                                                                                                                                                                                                                                             | ~                     |
| <ul><li>False</li></ul>                                                                                                                                                                                                                                                                                                                                            |                       |
| \ measures the electric potential between the drilling fluids in the rock.                                                                                                                                                                                                                                                                                         | uid and               |
| Resistivity log                                                                                                                                                                                                                                                                                                                                                    | ~                     |
| <ul><li>Caliper log</li></ul>                                                                                                                                                                                                                                                                                                                                      |                       |
| <ul><li>Sonic log</li></ul>                                                                                                                                                                                                                                                                                                                                        |                       |
| Gamma ray log                                                                                                                                                                                                                                                                                                                                                      |                       |
|                                                                                                                                                                                                                                                                                                                                                                    | their                 |
| Which physical properties of coal samples are commonly used for dentification and characterization?  Taste and odor when heated.  Surface color and visual appearance.                                                                                                                                                                                             | their                 |
| dentification and characterization?                                                                                                                                                                                                                                                                                                                                |                       |
| <ul> <li>dentification and characterization?</li> <li>Taste and odor when heated.</li> <li>Surface color and visual appearance.</li> </ul>                                                                                                                                                                                                                         |                       |
| <ul> <li>dentification and characterization?</li> <li>Taste and odor when heated.</li> <li>Surface color and visual appearance.</li> <li>Elasticity under pressure.</li> </ul>                                                                                                                                                                                     | *                     |
| <ul> <li>dentification and characterization?</li> <li>Taste and odor when heated.</li> <li>Surface color and visual appearance.</li> <li>Elasticity under pressure.</li> <li>Radioactive decay rate.</li> </ul> How are geophysical logs primarily used to interpret lithologies as                                                                                | <b>√</b><br>nd assess |
| <ul> <li>Taste and odor when heated.</li> <li>Surface color and visual appearance.</li> <li>Elasticity under pressure.</li> <li>Radioactive decay rate.</li> </ul> How are geophysical logs primarily used to interpret lithologies are servoir potential?                                                                                                         | nd assess             |
| <ul> <li>Taste and odor when heated.</li> <li>Surface color and visual appearance.</li> <li>Elasticity under pressure.</li> <li>Radioactive decay rate.</li> </ul> How are geophysical logs primarily used to interpret lithologies are eservoir potential? <ul> <li>By recording variations in rock properties such as density, porosity, and resident</li> </ul> | nd assess             |



#### True or False?

The physical properties of coal samples, such as their color, texture, and luster, can provide valuable information for their identification and characterization.

| O True |   | • |
|--------|---|---|
| Fals   | e |   |

#### **Extension Ouestions**

Explain how the properties of minerals are connected to their practical use as valuable resources. Choose one mineral and describe two of its key properties (such as hardness, color, luster, or conductivity), and then discuss how these properties make it suitable for a specific application or industry. Provide a real-world example to illustrate your points. (SAMPLE ANSWER BELOW)

The relationship between mineral properties and their utilization as valuable resources is a fundamental aspect of understanding the significance of minerals in various industries. One illustrative example is the mineral quartz, which showcases how its properties directly contribute to its practical applications.

Quartz is a mineral characterized by its hardness and its unique property of piezoelectricity. Its hardness, rated 7 on the Mohs scale, signifies its resistance to scratching and abrasion, making it an ideal material for manufacturing high-quality glass products. The hardness of quartz ensures that glass products made from it are durable and able to withstand external forces. This makes quartz an essential component in the production of glass used in smartphones, windows, lenses, and even scientific instruments. The piezoelectric property of quartz, on the other hand, refers to its ability to generate an electric charge when subjected to mechanical stress. This property is harnessed in a wide range of applications, including quartz crystals used in electronic devices like watches and oscillators, where the precise frequency generated by the piezoelectric effect is critical for accurate timekeeping and signal generation.

In essence, the hardness of quartz ensures its durability in glass production, while its piezoelectric property finds applications in various electronics.

