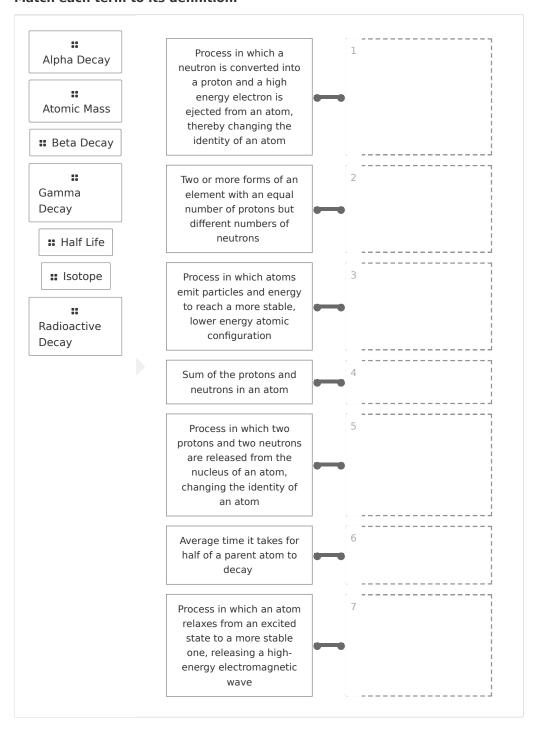
SI Geology - Full Discipline Demo

Absolute Dating

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Geology - Full Discipline DemoCourseSI Geology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term to its definition.

Correct answers:

- Beta Decay
 2 Isotope
 3 Radioactive Decay
 4 Atomic Mass
- 5 Alpha Decay 6 Half Life 7 Gamma Decay

Classify each statement as true or false.

:: Daughter atoms are always isotopes of the parent atoms.

**

Half-life quantifies the known rate of decay for radioactive isotopes and can be used to measure a rock's age.

: Isotope half lives can range from a few seconds to billions of years.

**

Radioactive dating measures the number of daughter atoms to determine the age of a rock.

::

Useful isotopes for radioactive dating are abundant in rock, have half-lives in billions of years, and are not dangerous.

True	False
1	2
1	1
1	1

Correct answers:

1

Half-life quantifies the known rate of decay for radioactive isotopes and can be used to measure a rock's age.

Isotope half lives can range from a few seconds to billions of years.

Useful isotopes for radioactive dating are abundant in rock, have half-lives in billions of years, and are not dangerous.

2 Daughter atoms are always isotopes of the parent atoms.

Radioactive dating measures the number of daughter atoms to determine the age of a rock.

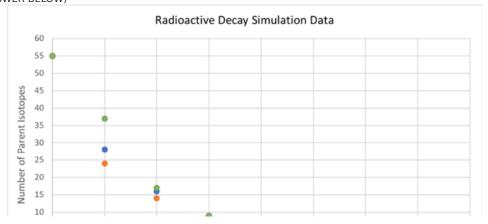
Exploration

	re is an imbalance in the number of protons and natom, leading to the conversion of a neutron of a high-energy electron.
Alpha	
○ Beta	~
Gamma	
Isotopes differ in their numb	per of protons.
O True	
False	•
The frequency of radioactive isotope.	e decay is determined by the half-life of an
O True	~
False	
Which of the following is not geologic radioactive dating?	t a property of a useful radioactive isotope for
 Isotope should have a half-life 	e less than one million years
Isotope should be significantl	y abundant in rocks
 Isotope should have a half-life 	e in the billions of years
 Isotope should not be danger 	ous
Exercise 1	
Identify and describe similarities and decay in nature.	differences between this experiment and radioactive

ppose your coins represented the isotope uranium-235 in a rock sample. How old was the sample er three half-lives?
nt: Reference Table 2 for the half-life of uranium-235.
1/8 of a radioactive element remains after 600 years, what is that element's half-life?
hat would your graph look like if only 5 coins were used in this exercise? What if 10,000 ins were used? What does this tell you about the relationship between half-life and sample?

Data Table 1: Radioactive Decay Data Trial 1 (SAMPLE ANSWER BELOW)

Half-Life	Parent Atoms (heads up)	Daughter Atoms (tails up)	Daughter Atoms Cumulative Total
0	50	0	0
1	28	22	22
2	16	12	34
3	9	7	41
4	6	3	44
5	3	3	57
6	0	3	50
7			
8			
9			


Data Table 2: Radioactive Decay Data Trial 2 (SAMPLE ANSWER BELOW)

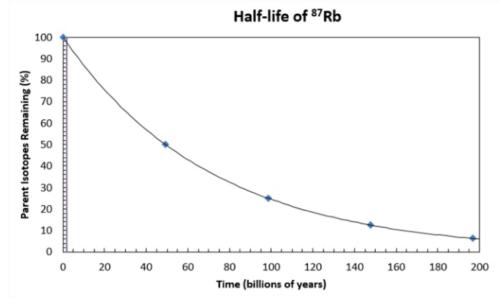
	Parent Atoms (heads up)	Daughter Atoms (tails up)	Daughter Atoms Cumulative Total
0	Student data will vary. 55	0	0
1	24	31	31
2	14	10	41
3	6	8	49
4	2	4	53
5	0	2	55
6			
7			
8			
9			

Data Table 3: Radioactive Decay Data Trial 3 (SAMPLE ANSWER BELOW)

Half-Life	Parent Atoms (heads up)	Daughter Atoms (tails up)	Daughter Atoms Cumulative Total
0	Student data will vary. 55	0	0
1	37	18	18
2	17	20	38
3	9	8	46
4	6	3	49
5	2	4	53
6	2	0	53
7	0	2	55
8			
9			

Photo 1: Radioactive Decay Simulation Graph (SAMPLE ANSWER BELOW)

Exercise 2


1. After 5 half-lives have passed, what would be the percent of parent isotopes, and the percent of daughter isotopes, in a sample containing ⁸⁷ Rb?			

2. Use your graph submitted in Photo 2 to determine the percentage of parent isotopes that would remain in the sample after 10 billion years have passed.

Data Table 4: Parent Isotopes Predicted Over Time (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)			
Half-Life	Time (Billions of years)	Parent Isotopes Remaining (Percent)	
0	0	100	
1	49.23	50	
2	98.46	25	
3	147.69	12.5	
4	196.92	6.25	

Photo 2: Graph of 87RB Predicted Parent Isotopes Over Time (SAMPLE ANSWER BELOW)

Competency Review

	or more forms of an element containing an equal number of protons a different number of neutrons, are called	,
	half-lives	
	gamma rays	
	isotopes	~
	atoms	
ln E	xercise 1, what do the two sides of the coin represent?	
In Ex	xercise 1, what do the two sides of the coin represent? Two isotopes of the same element	
		~
0	Two isotopes of the same element	~

○ Alpha	✓
Beta	
O Gamma	
Consider a sample containing 432 u how much uranium-238 would rema	ranium-238 atoms. After two half-lives, in in the sample?
O 216	
60	
O 119	
0 108	•
Radioactive decay is one of the only True False	v truly random processes in nature. ✓
de considera materiale tura namen	tation of the nucleus.
decay does not cause transmu	
Alpha	
O Alpha	✓
AlphaBetaGamma	↓ ubidium -87 atoms. How many daughter
AlphaBetaGamma Consider a sample containing 624 real	↓ ubidium -87 atoms. How many daughter
 Alpha Beta Gamma Consider a sample containing 624 restrontium-87 atoms would be presented.	↓ ubidium -87 atoms. How many daughter
 Alpha Beta Gamma Consider a sample containing 624 restrontium-87 atoms would be presented.	↓ ubidium -87 atoms. How many daughter

	table isotopes undergo, in which atoms emit particles and energy each a more stable configuration.	y
	half-lives	
	radioactive decay	~
	radioactive dating	
	absolute dating	

Extension Questions

Can radiometric dating accurately determine the age of a rock in all cases? Why or why not? (SAMPLE ANSWER BELOW)

Radiometric dating does not always accurately convey the age of a rock. When a sample is entirely composed of parent atoms, the isotopic clock starts ticking. When a rock's age is measured, it is measured from the formation of the rock and the present. However, if the rock undergoes melting - for example, via a volcanic eruption - the clock will be reset. As a result, the date of the original formation of the rock cannot be measured. Rather it will be measured from the formation of the new rock.

