SI Environmental Science - Full Discipline Demo

Salinization of Soils

Final Report - Answer Guide

Institution Science Interactive University

SessionSI Environmental Science - Full Discipline DemoCourseSI Environmental Science - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

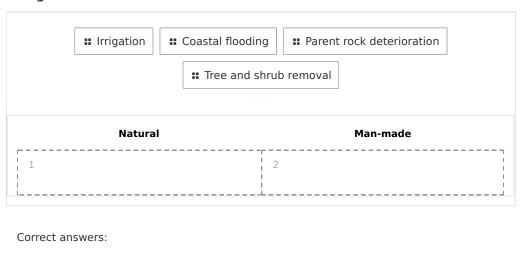
Identify each statement as true or false.

	: Salinized soils are det	trimental to agriculture.	
	: Most plants can excrete t	he salt absorbed from so	il.
	# Halophytes are adapte	d to live in salinized soils.	
The primary e cells.	#iffect of soil salinization on pla	-	balance within
	True	False	
1		2	

Correct answers:

1 Salinized soils are detrimental to agriculture.

Halophytes are adapted to live in salinized soils.


2

The primary effect of soil salinization on plants is creating a toxic imbalance within cells.

Most plants can excrete the salt absorbed from soil.

Categorize each source of salinization as natural or man-made.

- 1 Coastal flooding Parent rock deterioration
- 2 Irrigation Tree and shrub removal

Exploration

The primary effect of soil salinization on plants is limiting the ability of roots to absorb water even under wet soil conditions.

O True		•
Falco		

 $\underline{\hspace{1cm}}$ are salt-tolerant plants with adaptations to grow and reproduce in saline soils.

- HalophytesGlycophytes
 - Selenites
 - Epiphytes

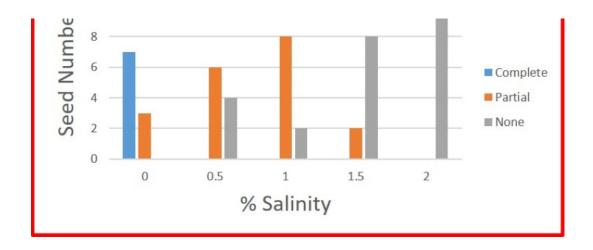
is the leading human cause of salinization around the world.
○ Irrigation ✓
Parent rock degradation
Coastal flooding
Road salting
Exercise 1
How was soil salinization modeled in the experimental procedures?
Soil salinization was modeled by adding both pure water (dH2O) and saline water of varying concentrations (0.5-2.0%) to paper towel disks inside Petri dishes that served as germination containers for bean seeds.
How could using tap water, instead of distilled water, to create saline solutions affect the results of this experiment.
Distilled water is pure H_2O , whereas most tap water sources contain some salts. These salts would have increased the saline concentrations used in this experiment, increasing the effects of salinization on seed germination.
Why should Petri dishes containing germinating beans be weighed at 24-hour intervals?
The Petri dishes should be weighed at 24-hour intervals to determine the amount of water lost due to evaporation, so that water could be added to maintain the original mass and salinity values for each of the treatments. Evaporation would cause the saline levels of the remaining solution inside the Petri dishes to increase.

What was the minimun Reference Data Table 1				mination in yo	our results?
0.5% salinity was the m salinity, zero beans con Data Table 1.					
Based on your results, nalophyte or glycophyt					eriment as a
The bean species used levels of 0.5% and high the beans would be res exhibited complete ger	er significantly istant to saliniza	affected germir ation in excess	ation rates. To	be considered a	a halophyte,
ased on your results,					
f the western United S n your answer.	states? Kelate	natural and r	uman caused	sources or soi	i Salinization
				0 /	10000 Word Limi
Data Table 1: Ger	mination Respo	nse to Salinity			
(SAMPLE ANSWER BELOW) Bean response	0.0% salinity	0.5% salinity	1.0% salinity	1.5% salinity	2.0% salinity
Complete germination	7	0.570 341111129	0	0	0

Photo 1: Germination Results after Five Days (SAMPLE ANSWER BELOW)

Partial germination

No germination


Graph 1: Salinization vs. Germination (SAMPLE ANSWER BELOW)

12

10

Germination Response to Salinity

Competency Review

The primary effect of soil salinization on plants is to limit the ability of roots to absorb		
carbon dioxide		
sunlight		
○ water	~	
o nutrients		
are plants which lack salt-tolerance and are over 1.0% salinity.	damaged by soils with	
Halophytes		
Glycophytes	~	
○ Salicornia		
Mangroves		
Salinized soils are beneficial to agriculture.		
True		
False	~	
is the most prevalent salt in soils and the foo	cus of salinization	
○ KCI		
○ Na ₂ CO ₃		
		
○ NaCl	✓	
I .	~	
O NaCl O CaCO ₃	plying too much irrigation	
○ NaCl	plying too much irrigation	
○ NaCl ○ CaCO ₃ Salinization is more commonly associated with ap	∀ plying too much irrigation ∀	

water should be used when making salt solutions for a salinize experiment.	zation
O Distilled	~
Drinking	
ОТар	
○ Well	
Petri dishes containing germinating beans should be weighed dail determine water loss due to evaporation.	y to
○ True	~
□ False	
A salt concentration of 1.0% inhibits the complete germination of seeds. True False	bean 🗸
Groundwater with a salt concentration of 0.5% is an appropriate wasource for irrigating field beans. True	vater
False	~
ı	

Extension Questions

Seeds of some plants are able to survive salinized soils by delaying germination until seasonal rains arrive and flush salts from the soil. Describe how you would change the procedures of this experiment to determine if beans are able to delay germination in response to salinized soils. (SAMPLE ANSWER BELOW)

The experiment would be conducted as performed in this lesson for five days. Then the beans in the 2.0% Petri dish would be rinsed in distilled water and placed in a 0.0% Petri dish and then observed for five additional days to determine if complete germination occurs. Only beans from the 2.0% Petri dish would be used for the new procedures because these were the only beans that displayed no signs of germination during the initial experiment.

