SI Chemistry - Full Discipline Demo

Using Buffers

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Categorize each statement as true or false.

::

Buffers are effective at resisting pH changes when large amounts of acid or base are added to a solution.

Chemical buffers are important to industrial production and to living systems.

: Chemical buffers have specific ranges and capacities.

::

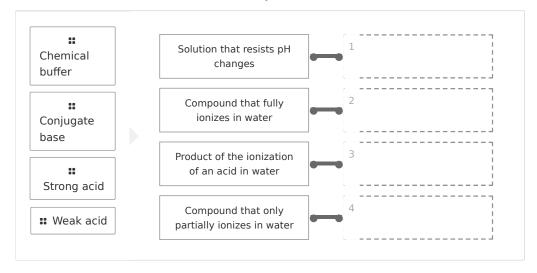
The buffer capacity is the pH range that is maintained when acids and bases are added to a solution.

True	False
	2
1	1
I I	I

Correct answers:

1

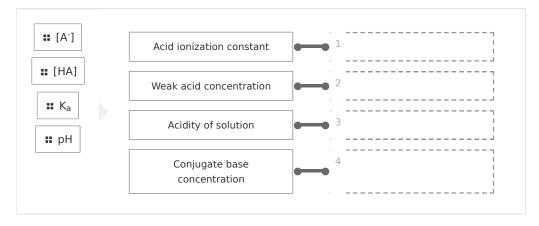
 $\label{lem:chemical buffers are important to industrial production and to living systems. \\$


Chemical buffers have specific ranges and capacities.

2

Buffers are effective at resisting pH changes when large amounts of acid or base are added to a solution.

The buffer capacity is the pH range that is maintained when acids and bases are added to a solution.


Match each term with the best description.

Correct answers:

1 Chemical buffer 2 Strong acid 3 Conjugate base 4 Weak acid

Identify the variables of the equation $\mathrm{pH} = \mathrm{pK}_a + \log \frac{[A^-]}{[HA]}$.

Correct answers:

1
$$K_a$$
 2 [HA] 3 pH 4 [A⁻]

Exploration

acid or base are added to it.	ran
pH changes	✓
pressure changes	
thermal changes	
The function of a buffer is to keep a solution neutral when small amount acids or bases are added.	s of
True	
False	~
The is the amount of acid or base that can be added to a solution before the pH significantly changes.	
buffer capacity	✓
buffer range	
buffer zone	
Buffers typically consist of a and	
 strong acid; its conjugate base 	
weak acid; its conjugate base	~
strong acid; a strong base	
The base component of the acetic acid buffer system is	
acetate	✓
ammonia	
sodium hydroxide	

The concentration of an acid in the Henderson-Hasselbalch equation is represented by	
○ pK _a	
○ [HA]	~
The Henderson-Hasselbalch equation is used to	
 calculate the pH of a buffered solution 	
 determine the acid and base concentrations required to prepare a buffer 	
 calculate the effect of adding additional acid or base to a buffer 	
All of the above	~
Exercise 1 Describe the purpose of a buffer.	
The purpose of a buffer is to minimize the change in pH when an acid or base is added solution.	to the
Write the chemical equations for the neutralization reactions that occurred when	HCl and
NaOH were added to the buffer solution.	nei aliu
$CH_3COO- (aq) + H_3O+ (aq) -> CH_3COOH (aq) + H_2O(I) CH_3COOH (aq) + OH- (aq) -> CH_3 + H_2O(I)$	₃ COO- (aq)

low do the results in Data Tables 1 and 2 support the role of a buffer?			
hem. The fact that the pH of th	pH changes when small quantities of an acid or base are added to be solution did not change when either a dilute acid or dilute base at the acetic acid/acetate system behaves as a buffer.		
	f the acetic acid buffer solution in relation to the addition of acids and bases. Reference the results in Data Tables 1,2,3,		
was quickly exceeded upon the colution was able to maintain plands and 2. However	ion was effective for large additions of dilute acids and bases, but additions of concentrated acids and bases. The acetic acid buffer H with the addition of 16 drops of dilute acid and base as recorded r, the addition of concentrated acid and base exceeded the on after only 2 drops as recorded in Data Tables 3 and 4.		
d distilled water act as a buf support your answer.	ffer in the experiment? Use the results in Data Tables 5 and 6		
	rly show that water does not behave as buffer. Small additions of ulted in a pH change in the solution		
olution that has an acetic acid	buffered solution needs to have a pH of 5.27. You have a d concentration of 0.01 M. What molarity of sodium acetate ution, given that the pK _a of acetic acid is 4.74? Show all		
$H = pK_a + log [A^-]/[HA]$			

 $5.27 = 4.74 + \log (x/0.01 M)$

log (x/0.01 M) = 0.53

x/0.01M = 3.39

x = 0.03 M sodium acetate

Data Table 1: Adding 0.1 M HCl from D1 to A1 (SAMPLE ANSWER BELOW) $\,$

Number of Drops	pH of Solution
0	5
2	5
4	5
6	5
8	5
10	5
12	5
14	5
16	5

Data Table 2: Adding 0.1 M NaOH from D6 to A6 (SAMPLE ANSWER BELOW)

Number of Drops	pH of Solution
0	5
2	5
4	5
6	5
8	5
10	5
12	5
14	5
16	5

Data Table 3: Adding 6 M HCl from Pipet into B1 (SAMPLE ANSWER BELOW)

pH of Solution
5
5
4
1

8	1
10	1

Data Table 4: Adding 6 M NaOH from Pipet into B6 (SAMPLE ANSWER BELOW)

Number of Drops	pH of Solution
0	5
2	5
4	5
6	5
8	8
10	12

Data Table 5: Adding 0.1 M HCl from D1 into C1

(SAMPLE ANSWER BELOW)

Number of Drops	pH of Solution
0	7
2	5
4	4
6	3
8	3
10	2

Data Table 6: Adding 0.1 M NaOH from D6 into C6

(SAMPLE ANSWER BELOW)

Number of Drops	pH of Solution
0	7
2	8
4	10
6	12
8	12
10	12

Competency Review

A chemical buffer is a solution that increases pH changes when small quantities of an acid or base are added.

True			
False			

 buffer temperature; buffer pressure 		
buffer range; buffer capacity	~	
buffer zone; buffer action		
Weak acids make better buffers than strong acids because they have		
conjugate bases of reasonable strength	~	
 weak conjugate bases 		
O low pH values		
is a weak acid present in commercial vinegar that can be used to create a buffer solution.		
Phosphoric acid		
Acetic acid	~	
Hydrochloric acid		
Formic acid		
The pH of a buffered solution is determined by		
the concentration of the weak acid		
 the concentration of the conjugate base 		
the acid ionization constant		
All of the above	~	
pH = pK _a if acid concentration is		
higher than conjugate base concentration		
lower than conjugate base concentration		

Distilled water		
Hydrochloric acid		
Sodium hydroxide		
Large volumes of concentrated acids and bases should be addustreed solutions when testing buffer ranges and capacities.		
O True		
○ False	✓	
Why would buffered solution tests be compared to distilled w	vater?	
Distilled water is not a buffer and acts as a control.	~	
Distilled water is an effective buffer against strong acids.		
Distilled water is an effective buffer against strong bases.		
Acetic acid buffers are most effective in resisting pH changes	s to	
 concentrated acids and bases 		

Extension Questions

John needs to create a buffered solution at a pH of 3.5 for his biomedical laboratory. a. Using the chart below, determine the appropriate acid for this application.

Acid	pK _a
Phosphoric	2.12
Pyruvic	2.49
Lactic	3.86
Benzoic	4.19

- b. Research and state the conjugate base of the the acid.
- c. Describe how John would determine the amounts of acid and base needed to create the buffered solution.

(SAMPLE ANSWER BELOW)

- a. John should select a buffer with a pK_a closest to the desired pH of his solution, 3.50. Lactic acid has the closest pK_a at 3.86.
- b. The conjugate base of lactic acid is lactate: $C_3H_5O_3^-$.
- c. John would use the Henderson-Hasselbalch equation: $pH = pK_a + log [A^-]/[HA]$ where pH = 3.50 and $pK_a = 3.86$ to determine the molar ratio of lactate/lactic acid needed for the solution.

