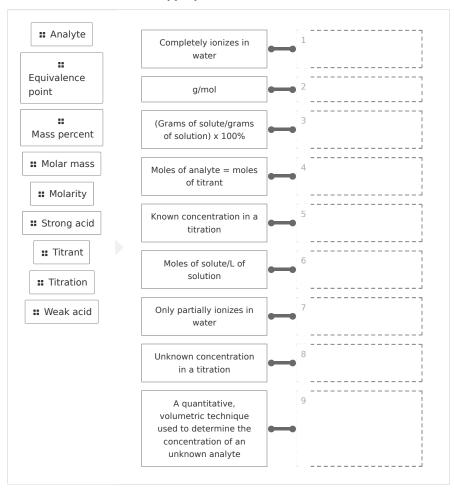
SI Chemistry - Full Discipline Demo

Titration for Acetic Acid in Vinegar

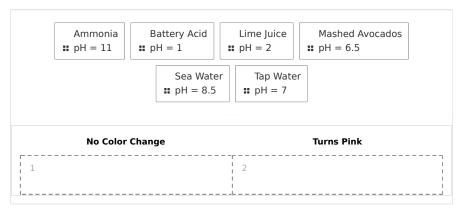

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the appropriate definition.



Correct answers:

- 1 Strong acid 2 Molar mass 3 Mass percent 4 Equivalence point
- 5 Titrant 6 Molarity 7 Weak acid 8 Analyte 9 Titration

Determine whether each chemical substance would remain the same color or turn pink in the presence of phenolphthalein.

Correct answers:

- Sea Water Ammonia pH = 8.5 pH = 11

Complete the chemical equation.

Correct answers:

1 NaOH(ag) 2 CH₃COONa(ag)

Exploration

A weak acid completely ionizes in water to produce both a conjugate base and a $\rm H_3O^+$ ion.

- True
- False

substance.	
○ True	✓
O False	
During a titration, a known concentration of is added to a of unknown concentration.	an
analyte; titrant	
o titrant; analyte	~
The equivalence point is the moment in a titration where exactly enoughtitrant has been added to completely react with the analyte.	gh
○ True	~
○ False	
Phenolphthalein is an effective pH indicator because equivalence point titrations are marked by the analyte changing in color from in acid and neutral solutions, to in basic solutions. light yellow; purple bright pink; colorless colorless; bright pink white; bright purple	
What are the coefficients in the chemical equation?	
$_\mathrm{HNO_3}+_\mathrm{NaOH}\rightarrow_\mathrm{NaNO_3}+_\mathrm{H_2O}$	
0 1, 1, 2, 1	
© 2, 2, 1, 3	
0 1, 1, 1, 1	✓
0 1, 3, 1, 1	

Exercise 1

The manufacturer of the vinegar used in the experiment stated that the vinegar contained 5.0% acetic acid. What is the percent error between your result and the manufacturer statement? Show your work.
The percent error between the % acetic acid as stated on the bottle, and the % calculated through experimentation is calculated below: % $Error = [(5.0 - 4.8) / 5.0] \times 100 = 4.0\%$
What challenges would you encounter with the titration if you had used apple cider vinegar or balsamic vinegar as the analyte instead of white vinegar?
The challenges in using apple cider or balsamic vinegar would have resulted from the color of the
vinegars. The experiment was performed with white vinegar which is colorless and allows for ease in observing the change in color from the indicator. If the vinegar had the deep black/purple color of balsamic vinegar or the caramel color of apple cider vinegar, viewing the change in indicator color, noting the endpoint of the titration would be very challenging.
If the tip of the syringe, "The Titrator", was not filled with NaOH before the initial volume reading was recorded, would the concentration of acetic acid in vinegar of that trial be greater than or less than the actual concentration? Please explain your answer.
If the tip of the syringe was not filled with NaOH prior to reading and recording the initial volume of NaOH, the amount of NaOH required to reach the endpoint would have been incorrect. By having the tip not filled then the actual volume of NaOH would have been larger then the actual volume used. This would have meant that the volume of NaOH needed to neutralize the acetic acid would have been to high. This would have resulted in the concentration of acetic acid in
vinegar being too high. How would your experimentally determined vinegar concentration have differed if you had over-titrated (added drops of NaOH to the analyte beyond the stoichiometric equivalence point)?
If the sample was over-titrated, the stoichiometric equivalence point would have been over-shot. This means that the experiment would suggest that there was a higher concentration of CH_3COOH in the vinegar sample than was actually present.

If a 7.0 mL sample of vinegar was titrated to the stoichiometric equivalence point with 7.5 mL of 1.5M NaOH, what is the mass percent of CH₃COOH in the vinegar sample? Show your work.

 $\frac{\text{moles CH}_3\text{COOH}}{\text{L}} = \frac{(1.5 \text{ M N}_a\text{OH}) \text{ x } (7.5 \text{ mL N}_a\text{O})}{7.0 \text{ mL of vinegar sample}}$

$$\% \text{ CH}_{3}\text{COOH} = \frac{1.61 \text{ mol CH}_{3}\text{COOH}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1 \text{ mL vinegar}}{1.00 \text{ g vinegar}} \times \frac{60.05 \text{ g CH}_{3}\text{COOH}}{1 \text{ mol CH}_{3}\text{COOH}}$$

Why is it important to do multiple trials of a titration, instead of only one trial?

When performing science experiments, it is always important to do multiple trials. Scientists want their results to be both accurate and precise, which results from achieving reproducible data/results under the same conditions.

Data Table 1: NaOH Titration Volume

(SAMPLE ANSWER BELOW)					
	Initial NaOH Volume (mL)	Final NaOH Volume (mL)	Total Volume of NaOH Used (mL)		
Trial 1	9.0	1.2	7.8		
Trial 2	9.4	1.2	8.2		
Trial 3	9.6	1.3	8.3		
		Average Volume of NaOH Used (mL):	8.1		

Data Table 2: Concentration of CH3COOH in Vinegar

(SAMPLE ANSWER BELOW)

Average Volume of NaOH Used (mL)	Concentration CH ₃ COOH in vinegar (mol/L)	% CH ₃ COOH in vinegar
8.1	0.81	4.8

Competency Review

ration is a quantitative, volumetric technique where a solution with a own concentration is added to a solution of an unknown concentration til the equivalence point is reached.		
○ True	~	
○ False		
During a titration, the solution with the unknown concentration is called the		
○ analyte	~	
i titrant		
equivalence point		
The moment in a titration where exactly enough titrant has been added completely react with the analyte is called	to	
the equivalence point		
the stoichiometric point		
both the equivalence point and the stoichiometric point	✓	
None of the above		
In the presence of a strong acid, phenolphthalein		
o remains colorless	~	
turns pink		
When designing a titration between a titrant and an analyte, it is import to ensure the chemical equation is balanced.	ant	
○ True	~	
○ False		
A strong acid completely ionizes in water to produce		
○ a conjugate acid and H ⁺ ions		
○ a conjugate base and H ⁺ ions	✓	
a conjugate acid and OH ⁻ ions		
○ a conjugate base and OH ⁻ ions		

During titration, a stopcock is used to	
clamp and secure the titrator	
 measure exactly 5 mL of titrant 	
release one drop at a time from the titrator	✓
 add NaOH to the titrator 	
The volume of titrant used during a titration will always be the exact sa throughout three trials.	me
○ True	
○ False	✓
The concentration of acetic acid in vinegar is represented by the units	·
○ mL/mol	
○ mol/L	✓
。	
○ mol	

Extension Questions

A student did not read the directions to the experiment properly and mixed up where to place the NaOH solution and the vinegar. He put the vinegar in the titrator and the measured amount of NaOH in the beaker. He then added a drop of the phenolphthalein to the solution in the beaker.

Does the student need to empty out all of the solutions and start over again or can he go ahead and run the titration? If he runs the titration using the solutions as given above, what should he expect to see happen for results?

(SAMPLE ANSWER BELOW)

The student could indeed run the titration in reverse. The solution in the beaker (containing the NaOH and the phenolphthalein) will initially be pink. The color will begin to fade as the titration proceeds and will turn colorless at the equivalence point.