SI Chemistry - Full Discipline Demo

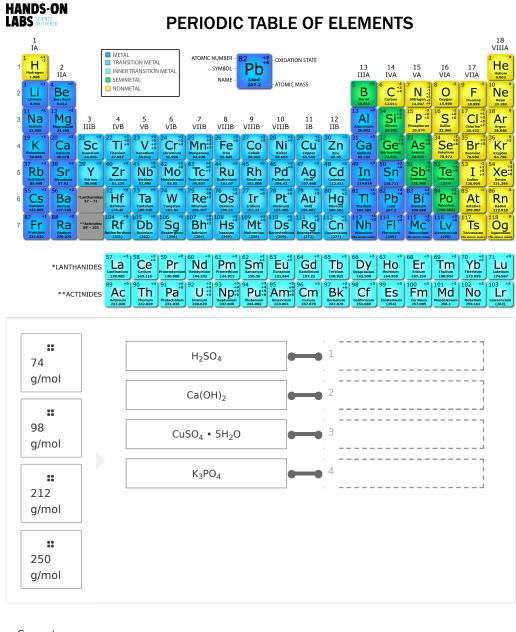
Stoichiometry of a Precipitation Reaction

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

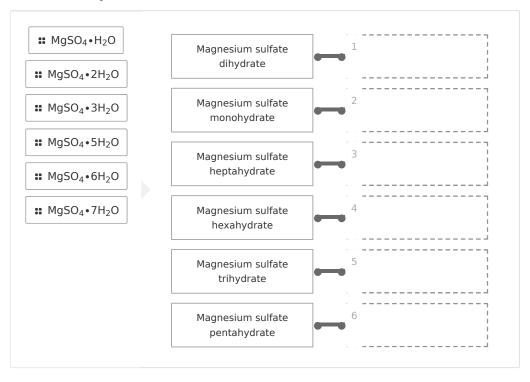
Instructor Sales SI Demo

Test Your Knowledge


Match each term with the best description.

Correct answers:

- 1 Reactants 2 Products 3 Mole 4 Stoichiometry
- 5 Precipitation reaction 6 Chemical equation 7 Hydrate


Match each compound with its correct molar mass.

Correct answers:

1 98 g/mol 2 74 g/mol 3 250 g/mol 4 212 g/mol

Match each hydrate formula with the correct chemical name.

Correct answers:

- $1 \quad MgSO_4 \bullet 2H_2O \qquad 2 \quad MgSO_4 \bullet H_2O \qquad 3 \quad MgSO_4 \bullet 7H_2O \qquad 4 \quad MgSO_4 \bullet 6H_2O$
- 5 MgSO₄•3H₂O 6 MgSO₄•5H₂O

Exploration

A chemical equation is a written representation of the process that occurs in a chemical reaction.

- True
- False

substance forms is called a reaction.	•
chemical	
soluble	
precipitation	✓
stoichiometry	
balanced	
A mole is a unit of measure, describing the amount of a chemical substantial contains as many atoms, ions, or molecules as there are in exactly grams of pure Nickel.	
True	
○ False	~
Stoichiometric quantities can be used to maximize the amount of produced from a chemical reaction.	ıct
□ True	✓
□ False	·
- Taise	
A is a solid compound that contains molecules.	
hydrate; water	✓
water molecule; hydrated	
hydrate; solid	
hydrate; hydrated	

Exercise 1

Given that a theoretical yield for isolating Calcium Carbonate in this experiment would be 100%. From that information and based on the results you obtained in this experiment, describe your success in the recovery of calcium carbonate and suggest two possible sources of error that would have caused you to not obtain 100% yield.
The answers to the question of percent yield will differ by student; the answer obtained during testing at HOL was 88.2%. However, the suggested possible sources of error are the same, whether or not the yield was above or below 100%. Possible sources of error in calculating the percent yield include: scale inaccuracies, salt sticking to the filter paper, incorrect math and calculations, impurities in the chemicals, etc. However, students should note that the calcium chloride dihydrate may contain more water than it suggests in the empirical formula (as a result of humidity, etc.) and thus the 1.00 g of the calcium chloride dihydrate may contain a higher percentage of water than suggested, lowering the amount of pure calcium chloride in the 1.00 gram.
What impact would adding twice as much Na ₂ CO ₃ than required for stoichiometric quantities have on the quantity of product produced?
As long as the minimum amount of Na_2CO_3 , required to reach stoichiometric quantities is added to the reaction, the addition of more Na_2CO_3 would not impact the quantity of product produced. The $CaCl_2$ is the limiting reactant, thus in this experiment it is the addition of the calcium chloride that is determinant of the quantity of precipitated product produced.
Determine the quantity (g) of pure CaCl ₂ in 7.5 g of CaCl ₂ •9H ₂ O. Show your work.
X g/110.98 g/mol $CaCl_2 = 7.5$ g/273.12 g/mol $CaCl_2 \cdot 9H_2O$ X = 3.0 g $CaCl_2$ There are 3.0 g of pure $CaCl_2$ in 7.5 g of $CaCl_2 \cdot 9H_2O$.

Determine the quantity (g) of pure MgSO₄ in 2.4 g of MgSO₄•7H₂O. Show your work. $X g/120.37 g/mol MgSO_4 = 2.4 g/246.48 g/mol MgSO_4 • 7H_2O$ $X = 1.2 \text{ g MgSO}_4$ There are 1.2 g of pure MgSO₄ in 2.4 g of MgSO₄•7H₂O. Conservation of mass was discussed in the background. Describe how conservation of mass (actual, not theoretical) could be checked in the experiment performed. To check the conservation of mass in the reaction performed in the exercise, the mass of sodium chloride produced from the reaction would need to be isolated from solution, measured, and added to the mass of precipitate formed. Next, the mass of the NaCl and CaCO3 would be compared to the combined starting mass of CaCl₂ and Na₂CO₃. Data Table 1: Stoichiometry Values (SAMPLE ANSWER BELOW)

Initial: CaCl ₂ •2H ₂ O (g)	1.50
Initial: CaCl ₂ •2H ₂ O (mol)	0.0102
Initial: CaCl ₂ (mol)	0.0102
Initial: Na ₂ CO ₃ (mol)	0.0103
Initial: Na ₂ CO ₃ (g)	1.09
Theoretical: CaCO ₃ (g)	1.02
Mass of Filter paper (g)	1.09
Mass of Filter Paper + CaCO ₃ (g)	2.12
Actual: CaCO ₃ (g)	1.03
% Yield:	101%

Competency Review

The chemicals that are present before a reaction occurs are called, and the chemicals produced from the reaction are called	
oproducts; reactants	
reactants; products	✓
A precipitation reaction produces insoluble substances that can be removed from the solution.	
○ True	✓
○ False	
The quantitative proportion of reactants to products in a chemical react is known as	ion
the Law of Conservation of Mass	
stoichiometry	~
the precipitation coefficient	
The molar mass of H_2O is approximately 18 grams; thus, one mole of H_2O weighs approximately 18 grams.	0
○ True	✓
False	
How many moles of water are in the compound copper sulfate pentahydrate?	
3	
	~
6	
O 7	

o conve	ert grams of reactants to moles
o deter	rmine how many moles of reactants are necessary to reach stoichiometric ntities
deter	rmine moles of product from the reaction
O conve	ert moles of product to grams
O All of	f the above
The prod	on is performed in a lab whereby two solutions are mixed together ducts are a liquid and a solid precipitate. What procedures would be measurement of actual yield of the solid?
Calcu	ulate the maximum potential yield, and apply the final value in the appropriate
equai	don.
	filter paper to isolate and dry the precipitate, and then determining mass of the
Use fi solid.	filter paper to isolate and dry the precipitate, and then determining mass of the
Use fi solid. Find t	filter paper to isolate and dry the precipitate, and then determining mass of the . the cumulative mass of the precipitate and solid, and extrapolate the
Use fi solid. Find t molec All of	filter paper to isolate and dry the precipitate, and then determining mass of the . the cumulative mass of the precipitate and solid, and extrapolate the ecular mass.
Use fi solid. Find t molec All of Why mightheoretic	filter paper to isolate and dry the precipitate, and then determining mass of the the cumulative mass of the precipitate and solid, and extrapolate the ecular mass. If the above
Use fi solid. Find t molec All of Why might theoretic	filter paper to isolate and dry the precipitate, and then determining mass of the the cumulative mass of the precipitate and solid, and extrapolate the ecular mass. If the above The actual yield of a precipitation reaction not equal the cal yield?
Use find to moleco All of Why might heoretic Environ	the cumulative mass of the precipitate and solid, and extrapolate the ecular mass. If the above The actual yield of a precipitation reaction not equal the cal yield? Tonmental conditions may cause variations in the water content of the hydrate.

Extension Questions

A student carries out the precipitation reaction shown below, starting with 0.030 moles of calcium nitrate. The final mass of the precipitate is 2.9 g. Answer the questions below to determine the percent yield.

 $3Ca(NO_3)_2(aq) + 2Na_3PO_4(aq) \rightarrow Ca_3(PO_4)_2(s) + 6NaNO_3(aq)$

- a. Which product is the precipitate?
- b. How many moles of the precipitate would one expect to be produced from 0.030 moles of calcium nitrate?
- c. How many grams of solid do you expect to be produced?
- d. What is the percent yield?

(SAMPLE ANSWER BELOW)

- a. The precipitate is $Ca_3(PO_4)_2$.
- b. 0.030 moles x (1 mole $Ca_3(PO_4)_2/3$ moles $Ca(NO_3)_2) = 0.010$ moles $Ca_3(PO_4)_2$
- c. 0.010 mol x 310.177 g/mol = 3.1 g $Ca_3(PO_4)_2$ (s)
- d. $(2.9 \text{ g/3.1 g}) \times 100\% = 93.5 \% \text{ yield}$