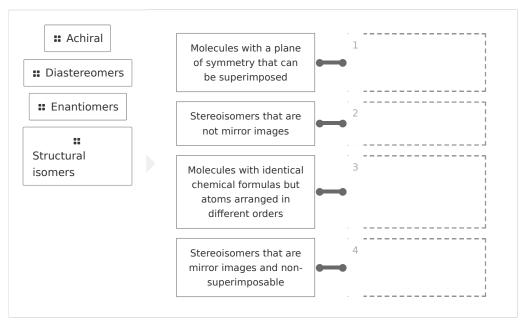
SI Chemistry - Full Discipline Demo

Stereochemistry 2 - Stereoisomers

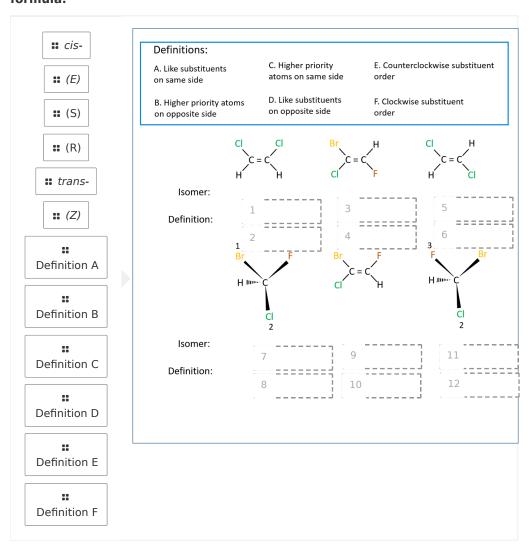

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

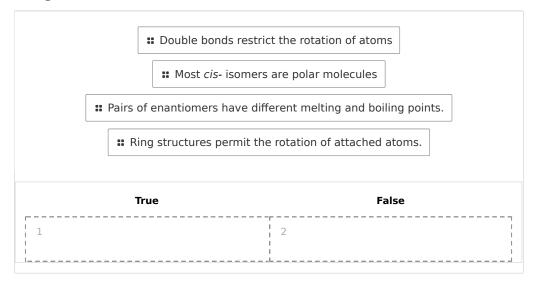
Test Your Knowledge

Match each term with the best description.



Correct answers:

1 Achiral 2 Diastereomers 3 Structural isomers 4 Enantiomers


Match the naming prefix and definition to the appropriate structural formula.

Correct answers:

- 1 cis- 2 Definition A 3 (E) 4 Definition B 5 trans-
- 6 Definition D 7 (S) 8 Definition E 9 (Z) 10 Definition C
- 11 (R) 12 Definition F

Categorize each statement as true or false.

Correct answers:

Double bonds restrict the rotation of atoms

Most cis- isomers are polar molecules

Pairs of enantiomers have different melting and boiling points.

Ring structures permit the rotation of attached atoms.

Exploration

aı	e molecules	with identic	al chemical	formulas	but different	three-
dimens	ional arrang	ements of a	toms.			

Cha	nıc	ICO	m	α rc
CIT	2 I I I	130	111	\Box \Box \Box

Geometric isomers form when atoms are locked into their due to a	
o chiral carbon atom	
double bond or ring structure	~
stereocenter	
<i>Trans-</i> isomers consist of like substituents on of doucerbons.	ıble-bonded
opposite sides	~
the same side	
all four corners	
Generally, more energy is required to break intermolecula	ar forces of
Generally, more energy is required to break intermolecularisomers. cis- chiral (E)- trans-	ar forces of
isomers. cis- chiral (E)- trans- (Z)- isomers have higher priority atoms on of the docarbons.	~
isomers. cis- chiral (E)- trans- (Z)- isomers have higher priority atoms on of the doc	~

A in the structural formula of cyclic compounds represents substituents oriented toward the viewer	
 dashed wedge 	
O diagonal line	
horizontal line	
solid wedge	~
An asymmetric carbon atom contains unique substituents.	
○ two	
○ three	
o four	~
o five	
Enantiomers are pairs of chiral molecules that are non-superimposab mirror images.	le
│ ○ True	~
False	
Enantiomers are named using the	
CIP convention	~
○ <i>cis-trans</i> system	
○ <i>E-Z</i> system	
A molecule with multiple chiral centers can form both enantiomers and diastereomers.	nd
○ True	~
○ False	

Exercise 1

What are geometric isomers?
Geometric isomers are molecules that are locked into their spatial positions, with respect to one
another, due to a double bond or a ring structure.
How does the <i>E-Z</i> notation system differ from the <i>cis-trans</i> naming system?
The <i>cis-trans</i> naming system assigns names to geometric isomers based on the
relative positions of substituents on each side of the double bond or ring structure. The system assigns names to
geometric isomers by giving priorities to substituents based on atomic or molecular mass, and is used for isomers possessing different substituents on each end of double bonds.
How are wedge-dash notations used to indicate the position of atoms in an isomer?
Solid wedges indicate atoms oriented toward the viewer, whereas dashed wedges indicate atoms orientated away from the viewer.
f the bromine atom was replaced with a fluorine atom in Part 2 of this exercise, would the <i>E</i> Z notations differ for the resulting molecule? Explain your answer.
Replacing bromine with fluorine would not change the notations of the resulting molecule because

Photo 1: cis-2-butene (SAMPLE ANSWER BELOW)

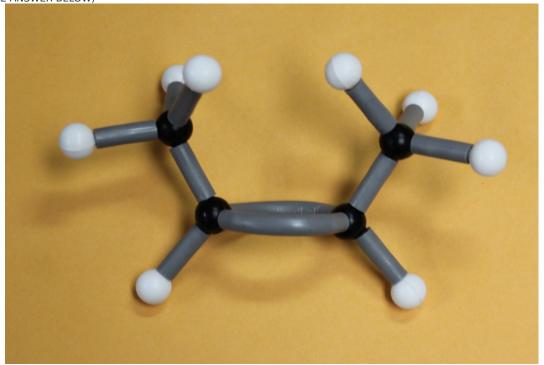


Photo 2: trans-2-butene

(SAMPLE ANSWER BELOW)

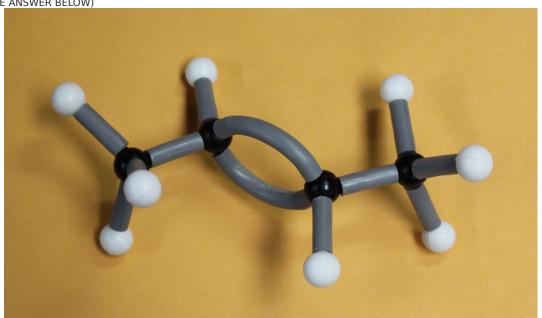
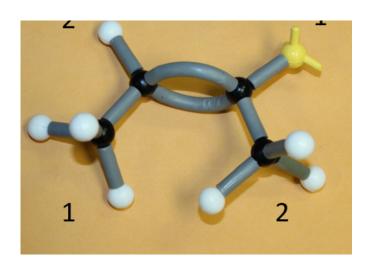



Photo 3: 2-bromo-2-butene Isomer #1 (SAMPLE ANSWER BELOW)

Data Table 1: 2-bromo-2-butene Isomers (SAMPLE ANSWER BELOW)

Isomer NumberIsomer NameIsomer #1(E)-2-bromo-2-buteneIsomer #2(Z)-2-bromo-2-butene

Photo 4: 2-bromo-2-butene Isomer #2 (SAMPLE ANSWER BELOW)

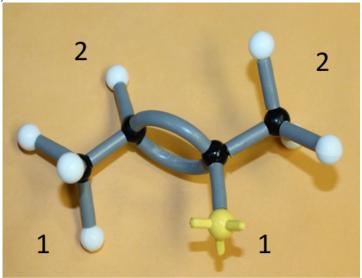


Photo 5: cis-2-bromocyclohexanol (SAMPLE ANSWER BELOW)

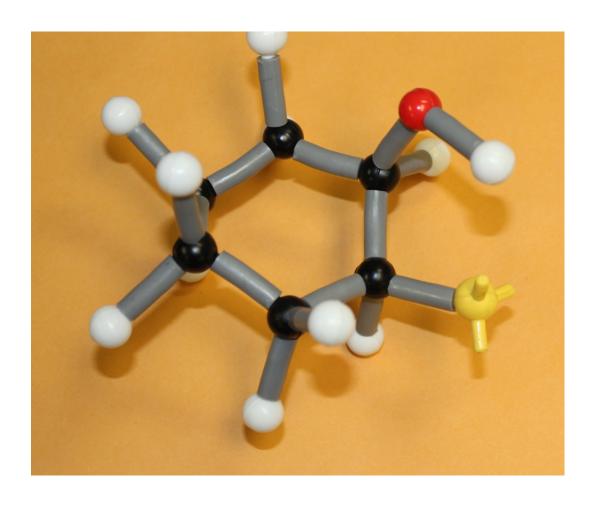
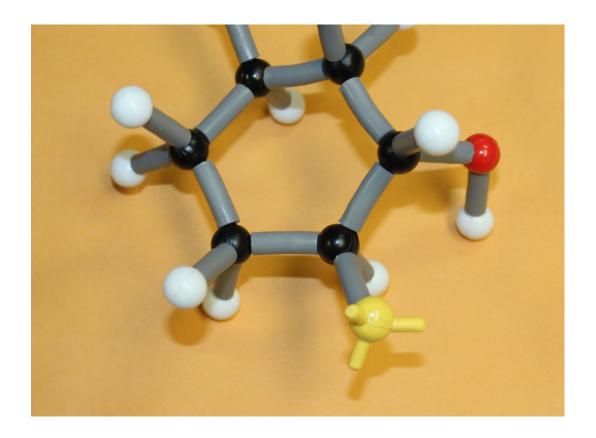



Photo 6: trans-2-bromocyclohexanol (SAMPLE ANSWER BELOW)

Exercise 2

What are optical isomers?

Optical isomers are molecules that differ three-dimensionally by the placement of substituents around one or more atoms in a molecule.

Which of the molecules in Data Table 2 are enantiomers? Explain your answer.
(S)-bromochlorofluoromethane and (R)-bromochlorofluoromethane are a pair of enantiomers because they are mirror images that cannot be superimposed on each other. The bromochloromethane mirrored molecules are not enantiomers because they can be superimposed on each other.
What are diastereomers?
Diastereomers are optical isomers that are not mirror images.
Which pairs of molecules in Data Table 3 would be expected to have identical chemical properties? Explain your answer.
The isomer pair (2S,3R) and (2R,3S) would have identical chemical properties because they are enantiomers. Similarly, the enantiomer pair (2S,3S) and (2R,3R) would share chemical properties. All other pair combinations would exhibit different chemical properties because they are diastereomers.

Data Table 2: Bromochlorofluoromethane and Bromochloromethane Isomers (SAMPLE ANSWER BELOW) $\begin{tabular}{ll} \hline \end{tabular}$

Isomer #	Isomer Name
Isomer #1	(S)-bromochlorofluoromethane
Isomer #2	(R)-bromochlorofluoromethane
Isomer #3	Bromochloromethane mirrored molecules (See Photo 9)

Photo 7: Bromochlorofluoromethane Isomer #1 (SAMPLE ANSWER BELOW)

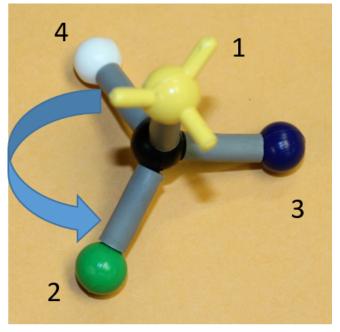


Photo 8: Bromochlorofluoromethane Isomer #2 (SAMPLE ANSWER BELOW)

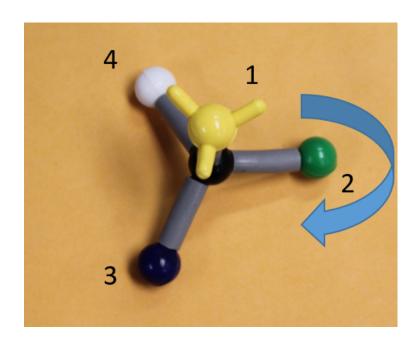
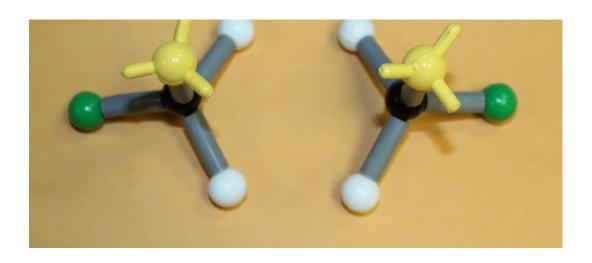
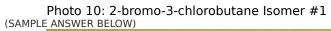



Photo 9: Bromochloromethane Mirror-Image (SAMPLE ANSWER BELOW)



Data Table 3: 2-bromo-3-chlorobutane Isomers (SAMPLE ANSWER BELOW)

(STATE DE TANGET BELOW)		
Isomer #	Isomer Name	
Isomer #1	(2S,3R)-2-bromo-3-chlorobutane	
Isomer #2	(2R,3R)-2-bromo-3-chlorobutane	
Isomer #3	(2R,3S)-2-bromo-3-chlorobutane	
Isomer #4	(2S,3S)-2-bromo-3-chlorobutane	

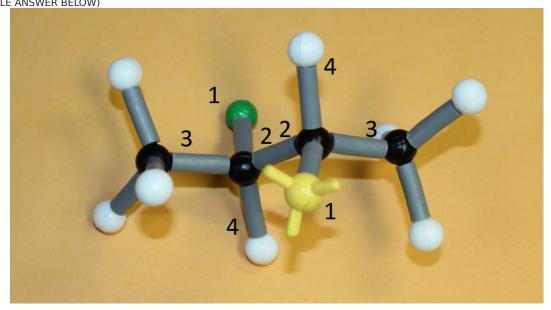


Photo 11: 2-bromo-3-chlorobutane Isomer #2

(SAMPLE ANSWER BELOW)

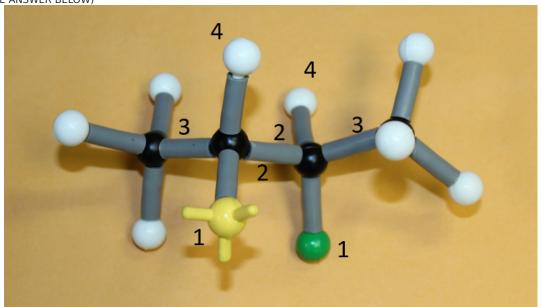


Photo 12: 2-bromo-3-chlorobutane Isomer #3 (SAMPLE ANSWER BELOW)

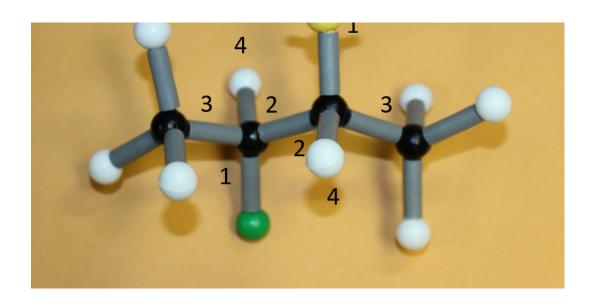
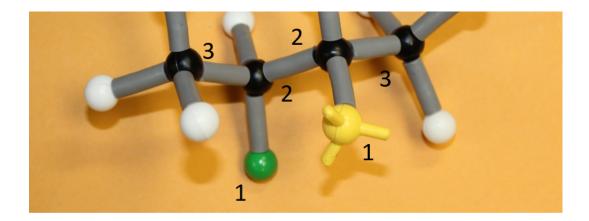



Photo 13: 2-bromo-3-chlorobutane Isomer #4 (SAMPLE ANSWER BELOW)

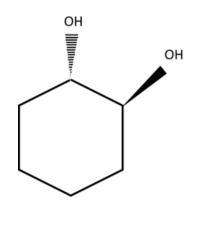
Competency Review

_ are examples of stereoisomers.

- Geometric isomers and optical isomers
- Chain isomers and positional isomers
- Structural isomers and functional isomers
- Conformers and rotomers

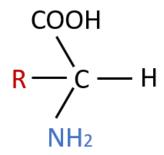
Double bonds and ring compounds inhibit the formation of geometric isomers.

- True
- False


Generally, cis- isomers are ____ molecules.

- nonpolar
- polar
 - chiral
 - achiral

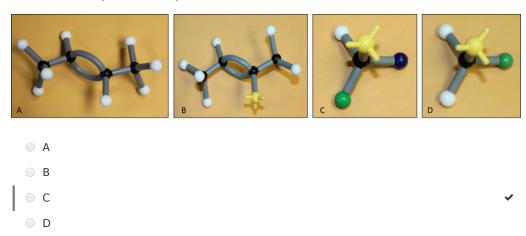
The structural formula pictured represents _____.


- trans-1 bromo-1-chloro-2-fluoro-ethene
- (S)-1 bromo-1-chloro-2-fluoro-ethene
- (E)-1 bromo-1-chloro-2-fluoro-ethene
- (Z)-1 bromo-1-chloro-2-fluoro-ethene

The wedge-dash notations in the formula represent a trans- isomer.

False

The structural formula pictured represents a(n) _____.

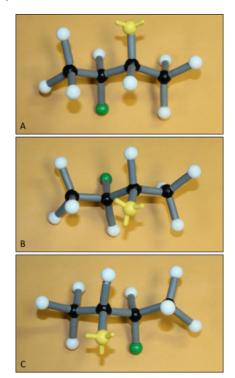


- asymmetric carbon atom
- chiral molecule
- stereogenic center
- All of the above

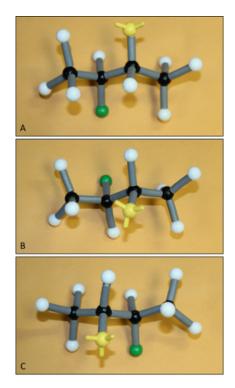
Pairs of diastereomers have identical chemical properties.

- True
- False

Which model pictured represents a chiral molecule?


What is the name of the compound represented by the molecular model pictured?

- Cis-2-bromocyclohexanol
- (S)-2-bromocyclohexanol
- Trans-2-bromocyclohexanol
- (Z)-2-bromocyclohexanol



Which of the models pictured are enantiomers?

- A and B
- B and C
- A and C

Which of the models pictured represents a molecule that would be expected to exhibit chemical properties that are unique among the three substances?

A

B

0 C

Extension Questions

Thalidomide is a drug that exists as a pair of enantiomers (shown below). While the physical properties of melting and boiling points of (R)- and (S)- thalidomide are identical, each enantiomer produces different biological reactions in a chiral environment.

Research and discuss the history of thalidomide. Explain how the stereochemisty of the molecule results in the contrasting biological reactions of each enantiomer.

(SAMPLE ANSWER BELOW)

Thalidomide was prescribed as both a sedative and cure for morning sickness in pregnant women in the late 1950's and early 1960's. The drug was later found to have catastrophic side effects resulting in fetal deaths and birth defects. The (S)- enantiomer of thalidomide fits the active site of an enzyme that produces the desired effect of sedation. The (R)- enantiomer of the drug fites the active site of a different enzyme leading to the toxic effects of fetal death and deformation.

