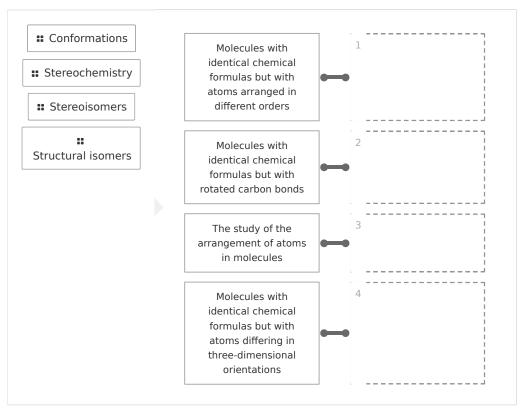
# SI Chemistry - Full Discipline Demo

## Stereochemistry 1 - Structural Isomers

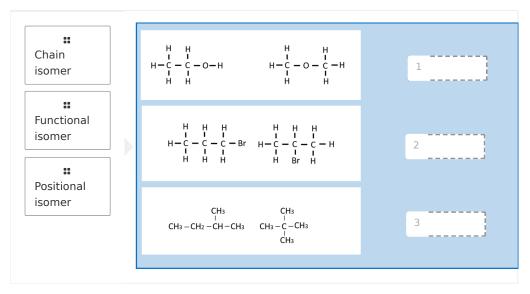

## Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

**Instructor** Sales SI Demo

### Test Your Knowledge

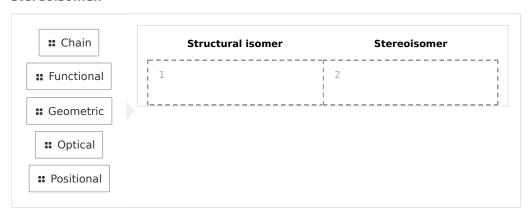
### Match each term with the best description.




#### Correct answers:

- 1 Structural isomers 2 Conformations 3 Stereochemistry
- 4 Stereoisomers




#### Match each term to the appropriate structural formulas.



#### Correct answers:

1 Functional isomer 2 Positional isomer 3 Chain isomer

# Categorize each type of isomer as being a structural isomer or a stereoisomer.



### Correct answers:

1 Chain Functional Positional 2 Optical Geometric

# Exploration

| is the study of the arrangement of atoms in molecules and the resulting properties of the molecules.                                |          |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul><li>Conformation</li></ul>                                                                                                      |          |
| <ul><li>Isomerization</li></ul>                                                                                                     |          |
| <ul><li>Stereochemistry</li></ul>                                                                                                   | <b>✓</b> |
| <ul><li>Biochemistry</li></ul>                                                                                                      |          |
| result when atoms are arranged in a different order.                                                                                |          |
| <ul><li>Conformations</li></ul>                                                                                                     |          |
| <ul> <li>Stereoisomers</li> </ul>                                                                                                   |          |
| Structural isomers                                                                                                                  | •        |
| Chain isomers result from the rotations of atoms around single bonds.  True False                                                   |          |
| l Paise                                                                                                                             | •        |
| isomers exhibit identical molecular formulas but the location of functional groups on the carbon skeleton of the molecules differs. |          |
| O Chain                                                                                                                             |          |
| <ul><li>Functional</li></ul>                                                                                                        |          |
| Geometric                                                                                                                           |          |
| Positional                                                                                                                          | ✓        |
|                                                                                                                                     |          |



| Alcohols and ethers are examples of isomers.                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O chain                                                                                                                                                                                             |
| ○ functional ✓                                                                                                                                                                                      |
| o positional                                                                                                                                                                                        |
| rotational                                                                                                                                                                                          |
|                                                                                                                                                                                                     |
| Exercise 1                                                                                                                                                                                          |
| Explain the difference between a structural isomer and structural conformations of an organic molecule. List the models that were conformations.                                                    |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| Structural isomers are molecules with the same molecular formula but with a different order of atoms. Conformations are merely twisted versions of molecules that have an identical order of atoms. |
| Models 2, 4, and 6 were conformations in Part 1. Models 8 and 10 were conformations in Part 2. Models 13 and 15 were conformations in Part 3.                                                       |
| Describe chain isomers and list the models that represent chain isomers.                                                                                                                            |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| Chain isomers occurs when the carbon skeleton is arranged differently in molecules with identical chemical formulas. Models 1, 3, and 5 represent chain isomers.                                    |
|                                                                                                                                                                                                     |
| Describe positional isomers and list the models that represent positional isomers.                                                                                                                  |
|                                                                                                                                                                                                     |
|                                                                                                                                                                                                     |
| Positional isomers occurs when functional groups occur in different locations on molecules with identical chemical formulas. Models 7, 9, and 11 represent positional isomers.                      |



Describe functional isomers and list the models represent functional isomers.

Functional isomers occurs when molecules with identical chemical formulas possess different functional groups. Models 12 and 14 represent functional isomers.

Examine the structural formulas for  $C_4H_8O$  below. Which structure is not an isomer of butanal? Explain your answer.

### Butanal

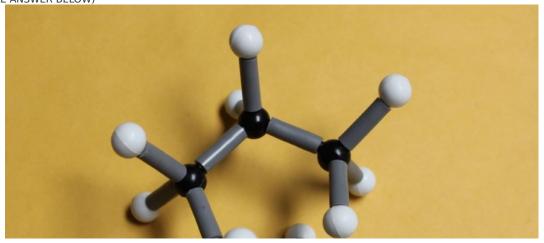

Structure A is not an isomer of butanal, but a conformation of the molecule. The carbon skeleton, functional group and arrangement of the molecule is identical to butanal and merely represents a twisting of the carbon skeleton.

Photo 1: Unbranched (SAMPLE ANSWER BELOW)



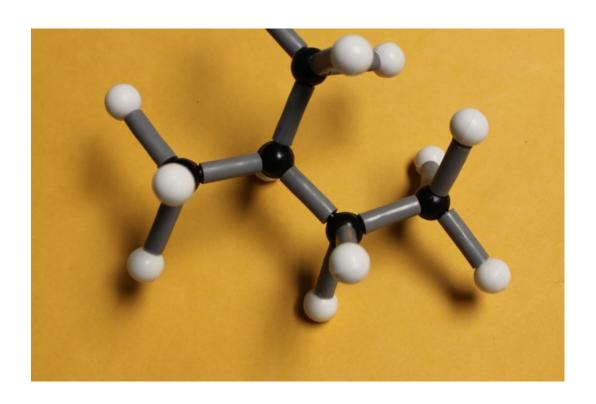


Photo 2: C-shaped (SAMPLE ANSWER BELOW)








# Data Table 1: Simple Hydrocarbon, C5H12 (SAMPLE ANSWER BELOW)

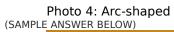

| Isomer Type or Conformation |
|-----------------------------|
|                             |
| Conformation                |
| Chain Isomer                |
| Conformation                |
| Chain Isomer                |
| Conformation                |
|                             |

Photo 3: Branched (SAMPLE ANSWER BELOW)













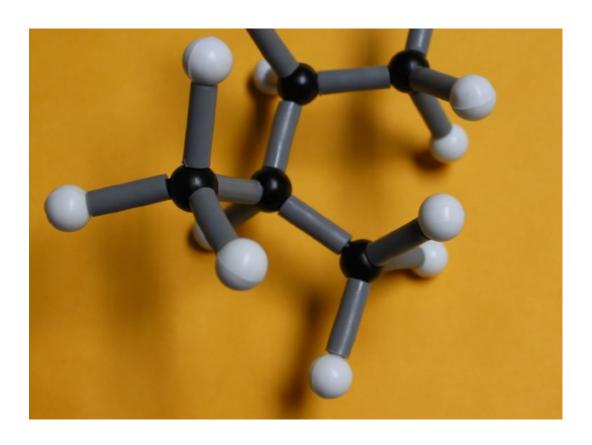



Photo 5: Quaternary (SAMPLE ANSWER BELOW)





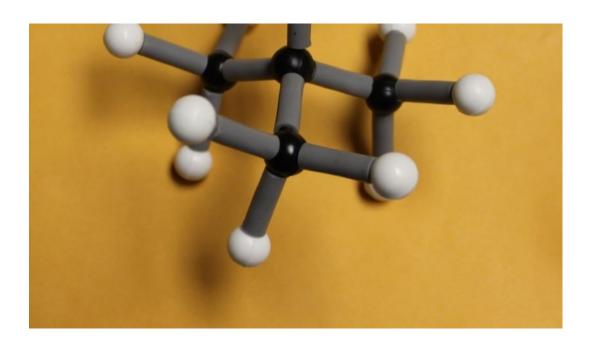



Photo 6: Rotated Quaternary (SAMPLE ANSWER BELOW)





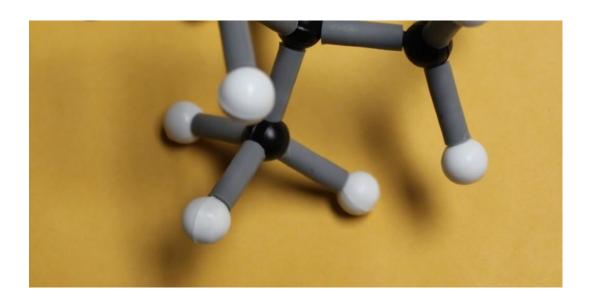
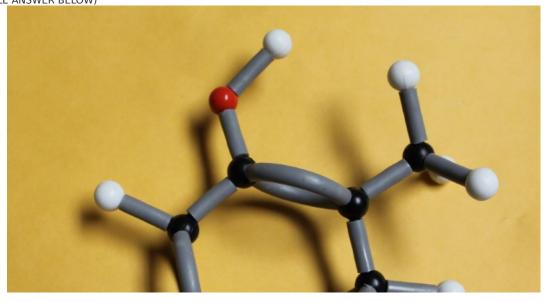




Photo 7: 2-Methylphenol (SAMPLE ANSWER BELOW)



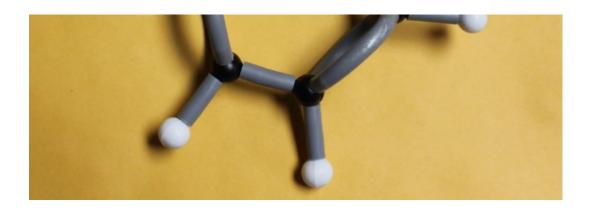
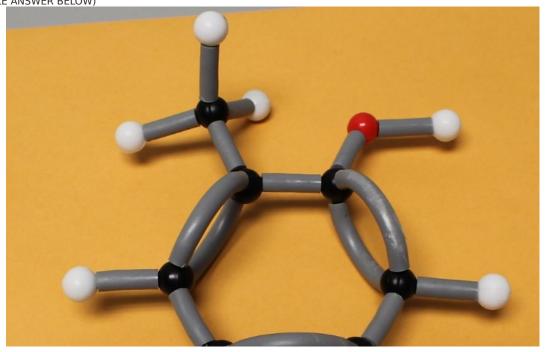
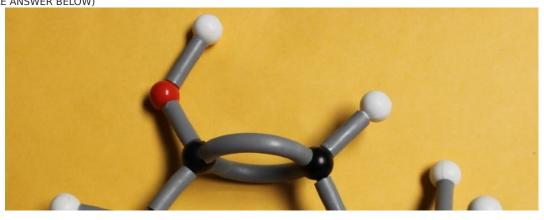




Photo 8: 2-Methylphenol (flipped) (SAMPLE ANSWER BELOW)






Data Table 2: Aromatic Compound, C7H8O (SAMPLE ANSWER BELOW)

| Name                         | Isomer Type or Conformation |
|------------------------------|-----------------------------|
| #7 2-Methylphenol            |                             |
| #8 2-Methylphenol (flipped)  | Conformation                |
| #9 3-Methylphenol            | Positional isomer           |
| #10 3-Methylphenol (flipped) | Conformation                |
| #11 4-Methylphenol           | Positional isomer           |

Photo 9: 3-Methylphenol (SAMPLE ANSWER BELOW)





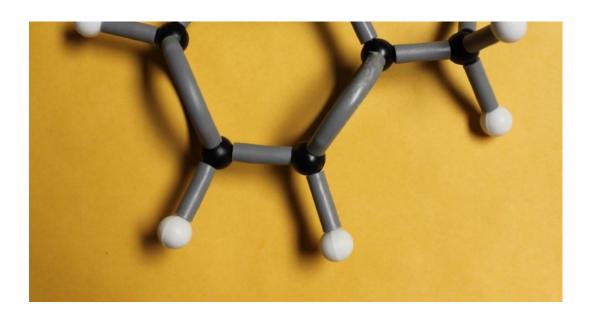



Photo 10: 3-Methylphenol (flipped) (SAMPLE ANSWER BELOW)

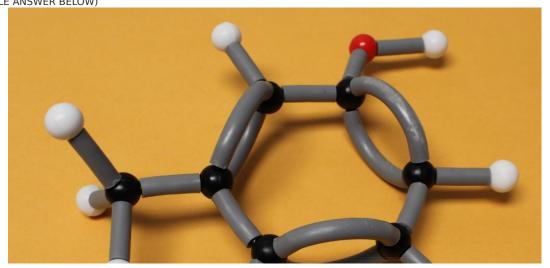
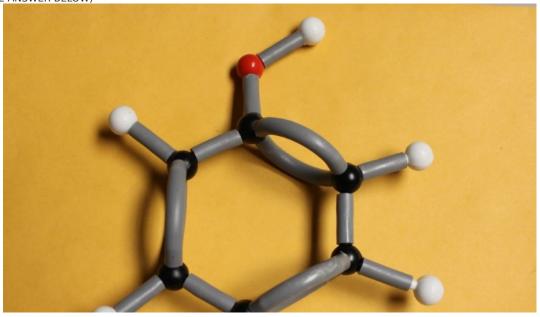








Photo 11: 4-Methylphenol (SAMPLE ANSWER BELOW)





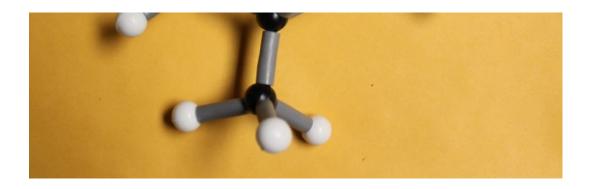
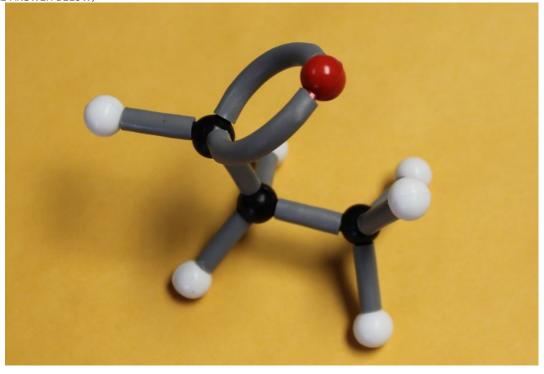
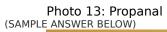
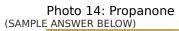





Photo 12: Propanal (SAMPLE ANSWER BELOW)










# Data Table 3: Aldehyde and Ketone, C3H6O (SAMPLE ANSWER BELOW)

| (SAMELE ANSWER BELOW) |                             |
|-----------------------|-----------------------------|
| Name                  | Isomer Type or Conformation |
| #12 Propanal          |                             |
| #13 Propanal          | Conformation                |
| #14 Propanone         | Functional Isomer           |
| #15 Propanone         | Conformation                |



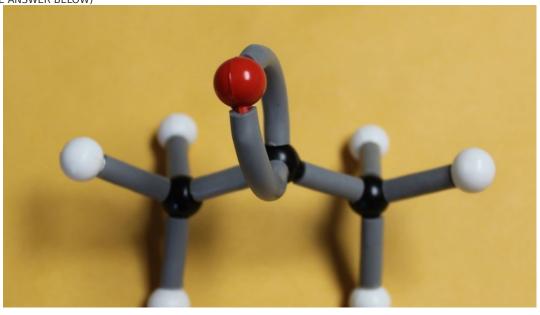
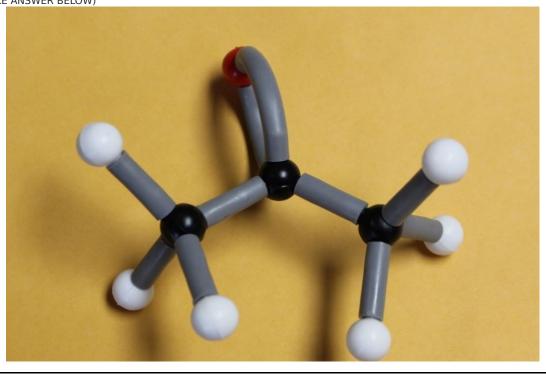
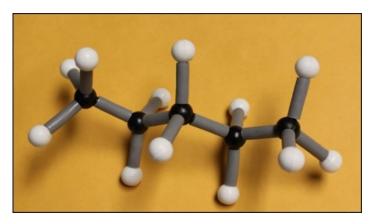






Photo 15: Propanone (SAMPLE ANSWER BELOW)

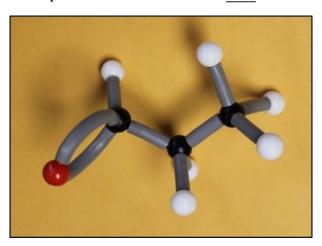





# 



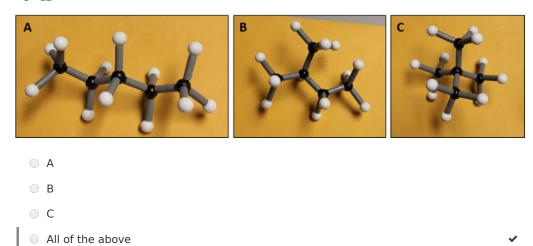
| around single bonds.                                                                                                                                                                                                                             |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <ul><li>Conformations</li></ul>                                                                                                                                                                                                                  | <b>~</b>             |
| <ul><li>Stereoisomers</li></ul>                                                                                                                                                                                                                  |                      |
| Structural isomers                                                                                                                                                                                                                               |                      |
| O Positional isomers                                                                                                                                                                                                                             |                      |
| Simple hydrocarbons exhibit isomerism.                                                                                                                                                                                                           |                      |
| ○ chain                                                                                                                                                                                                                                          | <b>✓</b>             |
| functional                                                                                                                                                                                                                                       |                      |
| position                                                                                                                                                                                                                                         |                      |
| None of the above                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                  |                      |
| Positional isomers are molecules with different arrangements of the skeleton but with the same chemical formula.                                                                                                                                 | e carbon             |
| True                                                                                                                                                                                                                                             |                      |
| False                                                                                                                                                                                                                                            | <b>~</b>             |
|                                                                                                                                                                                                                                                  |                      |
|                                                                                                                                                                                                                                                  |                      |
| Functional isomers occur when atoms rearrange by                                                                                                                                                                                                 |                      |
| Functional isomers occur when atoms rearrange by  altering the carbon skeleton                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                  |                      |
| altering the carbon skeleton                                                                                                                                                                                                                     | <b>~</b>             |
| <ul><li>altering the carbon skeleton</li><li>changing the location of functional groups</li></ul>                                                                                                                                                | <b>~</b>             |
| <ul><li>altering the carbon skeleton</li><li>changing the location of functional groups</li><li>forming different functional groups</li></ul>                                                                                                    | *                    |
| <ul><li>altering the carbon skeleton</li><li>changing the location of functional groups</li><li>forming different functional groups</li></ul>                                                                                                    | ٠<br>ctivity.        |
| <ul> <li>altering the carbon skeleton</li> <li>changing the location of functional groups</li> <li>forming different functional groups</li> <li>None of the above</li> </ul>                                                                     | <b>~</b><br>ctivity. |
| <ul> <li>altering the carbon skeleton</li> <li>changing the location of functional groups</li> <li>forming different functional groups</li> <li>None of the above</li> </ul> Functional isomers have unique functional groups but identical read | ctivity.             |



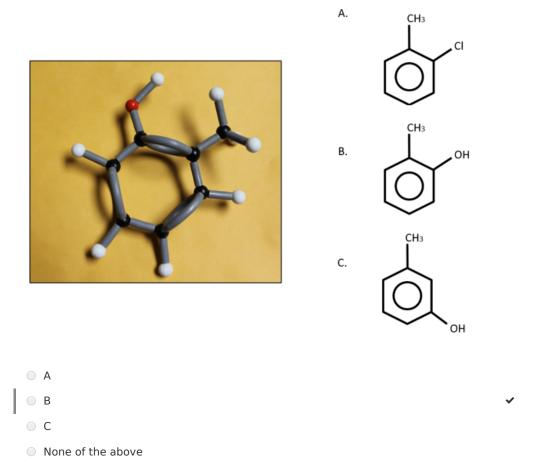

### The molecular model pictured below represents a(n) \_\_\_\_.



- aromatic compound
- ketone
- linear hydrocarbon
- cyclic hydrocarbon


## The molecular model pictured below contains a \_\_\_\_\_.




- carbon chain
- carbonyl group
- methyl group
- All of the above



# Which of the molecular models pictured below represents an isomer of $C_5H_{12}$ ?



### What is the structural formula for the molecular model pictured below?



Structural formulas \_\_\_\_ and \_\_\_\_ pictured below represent chain isomers.

# C<sub>4</sub>H<sub>8</sub>O

- A; B
  - B; C
  - C; D
  - A; D

Structural formulas \_\_\_\_ and \_\_\_\_ pictured below represent functional isomers.

## C<sub>4</sub>H<sub>8</sub>O

- A; B
- B; C
- 0 C; D
  - A: D

## **Extension Questions**

The chemical formula  $C_4H_{10}O$  results in four alcohols and three ethers for a total of seven structural isomers.

Draw pairs of structural formulas for these molecules that illustrate positional and functional isomerism on a sheet of paper. You will be drawing a total of four formulas. Label each pair as positional or functional. Take a photo of the structural formulas and upload the image into the photo panel below.

(SAMPLE ANSWER BELOW)

### **Positional Isomers**

### **Functional Isomers**

