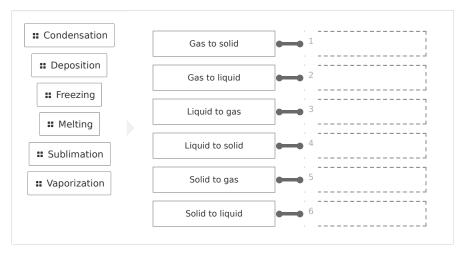
# SI Chemistry - Full Discipline Demo

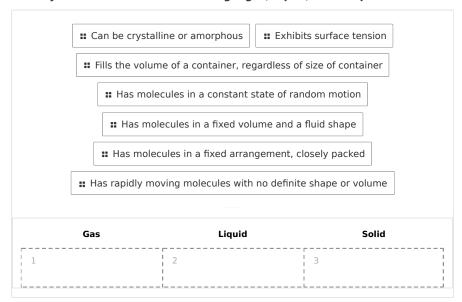
### States of Matter


## Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

**Instructor** Sales SI Demo

## Test Your Knowledge


#### Match the terms to the transitions.



#### Correct answers:

- 1 Deposition 2 Condensation 3 Vaporization 4 Freezing
- 5 Sublimation 6 Melting

#### Classify each statement as describing a gas, liquid, or solid phase.

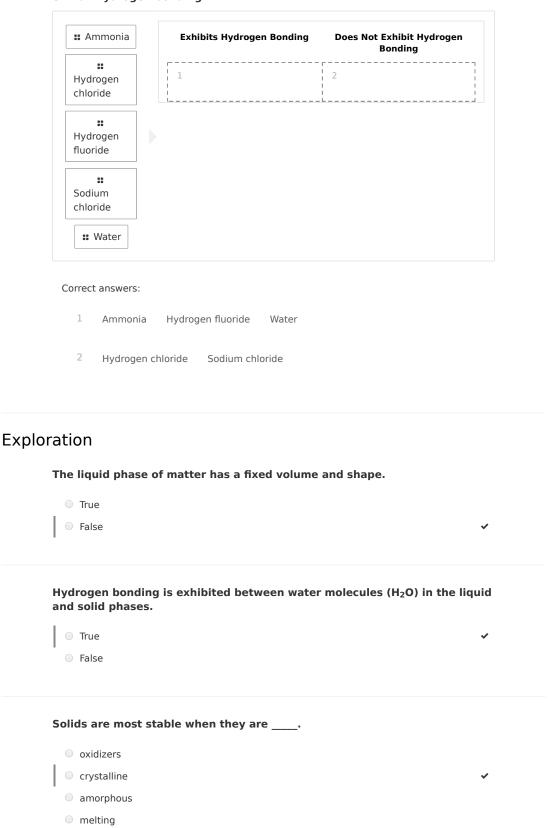


#### Correct answers:

1 Fills the volume of a container, regardless of size of container

Has molecules in a constant state of random motion

Has rapidly moving molecules with no definite shape or volume


2 Exhibits surface tension

Has molecules in a fixed volume and a fluid shape

3 Can be crystalline or amorphous

Has molecules in a fixed arrangement, closely packed

Determine whether each molecule exhibits hydrogen bonding or does not exhibit hydrogen bonding.





| Phase changes that release energy include deposition, freezing, and vaporization.                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ○ True                                                                                                                                                                                                                 |  |
| ○ False ✓                                                                                                                                                                                                              |  |
| A(n) describes temperature changes for a sample passing through different states of matter, and can be used to determine the melting point and boiling point of substances.                                            |  |
| ○ heating curve                                                                                                                                                                                                        |  |
| intermolecular force                                                                                                                                                                                                   |  |
| <ul> <li>van der Waals force</li> </ul>                                                                                                                                                                                |  |
| Exercise 1                                                                                                                                                                                                             |  |
| Describe your results for the melting point of 1-tetradecanol. Were your results consistent? How do your results compare to the published melting point for 1-tetradecanol?                                            |  |
|                                                                                                                                                                                                                        |  |
| They should get consistent results. The average that HOL recorded was 37.9°C. The published value is 38°C.                                                                                                             |  |
| Describe what occurs to the particles of a substance when the substance melts. Explain why                                                                                                                             |  |
|                                                                                                                                                                                                                        |  |
| Some of the van der Waals bonds are broken, allowing the molecules to slide past each other. The substance then has a fluid shape but still a fixed volume. This occurs because the heat energy excites the molecules. |  |
| When performing this experiment, when is the 1-tetradecanol in a condensed phase? Explai your answer.                                                                                                                  |  |
|                                                                                                                                                                                                                        |  |

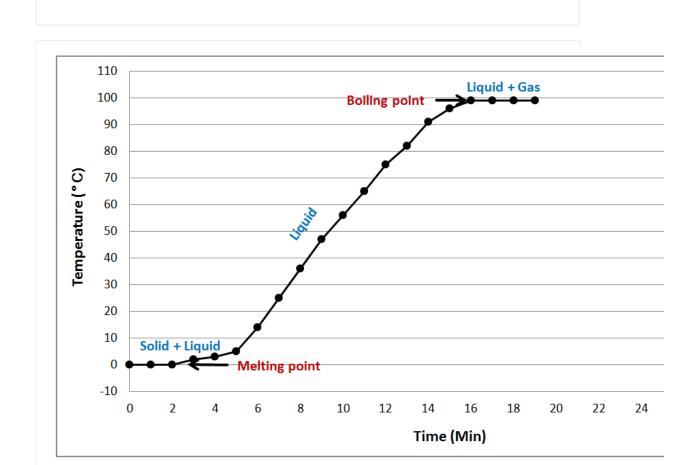


The 1-tetradecanol is in a condensed phase during the entire experiment. Condensed phases are liquids and solids when the van der Waals forces acting on the molecules allow them to move closer together.

| Based on your observations of 1-tetradecanol when it reformed a solid after melting, does 1-tetradecanol form a crystalline or amorphous solid? Explain the difference between these two terms as part of your answer.    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                           |  |  |
| Student answers will vary for observations. A crystalline solid has an ordered arrangement of molecules and an amorphous solid does not.                                                                                  |  |  |
| Give some examples of how it might be useful to know the melting or boiling points of a substance. Think in terms of both scientific and commercial/industrial settings.                                                  |  |  |
| Scientifically: These properties are useful for identifying chemicals or the purity of a substance.                                                                                                                       |  |  |
| Commercially: If a substance is used for a purpose, it may need to be in solid, liquid, or gas form to be useful. A substance may need to be stored at a certain range of temperatures.                                   |  |  |
| Describe any possible sources of error for this exercise.                                                                                                                                                                 |  |  |
| Reading temperature incorrectly, thermometer was not calibrated correctly, or did not notice the exact time that the substance melted. In addition, the thermometer is only marked to the nearest whole degree (Celsius). |  |  |

# Data Table 1: Melting Point of Tetradecanol (SAMPLE ANSWER BELOW)

|                         | Melting Point for 1-tetradecanol (°C) |  |
|-------------------------|---------------------------------------|--|
| Trial 1                 | 38.5                                  |  |
| Trial 2                 | 37.5                                  |  |
| Trial 3                 | 37.8                                  |  |
| Average of the 3 Trials | 37.9                                  |  |


## Exercise 2



Using the temperature data recorded in Data Table 2, create a heating curve.

- Plot time (minutes) on the x-axis (horizontal axis) and temperature (°C) on the y-axis (vertical axis). Connect the plotted points with a line.
- Label the heating curve to show each phase of matter (solid, solid + liquid, liquid + gas).
- Label the melting point and boiling point on the heating curve.
- Save an image (jpeg or png) of the graph, or take a screenshot.
- Upload your graph to the panel titled Graph 1: Heating Curve.

Note: An example heating curve is given in Figure 6 in the background information.



Are there parts of the curve with positive slopes and parts that are flat (slope of zero)? What states of matter are present when the slope of the heating curve is positive and what states of matter are present when the slope is zero or close to zero?

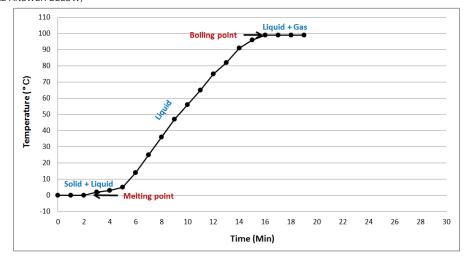


liquid state of matter is present. Describe the key characteristics for the three states of matter. Solid has a fixed shape and a fixed volume, liquid has a fluid shape and a fixed volume, and gas has a fluid shape and a fluid volume. Define the melting point. What was the observed melting point of water? The melting point is the temperature at which a substance changes from a solid to a liquid. The observed melting point was 0°C. Define boiling point. What was the observed boiling point of water? The boiling point is the temperature at which a substance changes from a liquid to a gas. The observed boiling point was 99°C. What happens to heat energy when it is not increasing the temperature of the substance in the beaker? Use your heating curve to explain your answer. The energy is used to break the intermolecular bonds. This occurs in the melting and boiling periods of the heating curve. Was temperature perfectly constant during your test while the water was melting and while it was boiling? Explain why or why not.

Yes, solid and liquid are both present when the heating curve is close to zero for the melting point, and liquid and gas are both present during the boiling point. Between the two on this graph, only



No, it was not perfectly constant during melting or boiling. The heat from the flame was intense, and even though the water was stirred, the temperature was not entirely constant throughout the mixture.


| he published melting point of $\rm H_2O$ is 0°C, and the published boiling point is 100°C. Why now have found different values?                                                                            | nay |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The pressure of the air may be different than the standard. In addition, other sources of error mainclude: resting the thermometer on the glass or not stirring the mixture consistently before taki       |     |
| se the following information to determine if the intermolecular forces of isopropyl alcoho                                                                                                                 | ol  |
| re greater or weaker than the intermolecular forces of water. Explain your answer. The nelting point of isopropyl alcohol (rubbing alcohol, $C_3H_8O$ ) is about -90°C and the boiling oint is about 82°C. |     |
|                                                                                                                                                                                                            |     |
| No, they are not quite as strong as water because it takes less energy (heat) to break the intermolecular bonds.                                                                                           |     |

Data Table 2: Temperature and Observations for Heating Curve  $(\mbox{\scriptsize SAMPLE ANSWER BELOW})$ 

| Temperature (°C) | Observations                                                                                                   |
|------------------|----------------------------------------------------------------------------------------------------------------|
| 0.0              | Solid/Ice                                                                                                      |
| 0.0              | Melting                                                                                                        |
| 0.2              | Melting                                                                                                        |
| 2.0              | Melting                                                                                                        |
| 3.2              | Melting                                                                                                        |
| 5.3              | Melting                                                                                                        |
| 14.1             | All of ice has melted: liquid only                                                                             |
| 25.3             | Liquid                                                                                                         |
| 36.2             | Liquid                                                                                                         |
| 47.0             | Liquid                                                                                                         |
| 56.1             | Liquid                                                                                                         |
| 65.4             | Liquid                                                                                                         |
| 75.3             | Liquid                                                                                                         |
| 82.0             | Liquid                                                                                                         |
| 91.3             | Liquid                                                                                                         |
| 96.2             | Boiling                                                                                                        |
|                  | 0.0<br>0.0<br>0.2<br>2.0<br>3.2<br>5.3<br>14.1<br>25.3<br>36.2<br>47.0<br>56.1<br>65.4<br>75.3<br>82.0<br>91.3 |

| 16 | 99.0 | Boiling |
|----|------|---------|
| 17 | 99.1 | Boiling |
| 18 | 99.0 | Boiling |
| 19 | 99.2 | Boiling |
| 20 |      |         |
| 21 |      |         |
| 22 |      |         |
| 23 |      |         |
| 24 |      |         |
| 25 |      |         |
| 26 |      |         |
| 27 |      |         |
| 28 |      |         |
| 29 |      |         |
| 30 |      |         |

Graph 1: Heating Curve (SAMPLE ANSWER BELOW)



| Exercise 3                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In this experiment, there were two possible identities for the gas produced: hydrogen or chlorine, which have quite different properties. Hydrogen is a colorless, odorless, flammable gas. Chlorine gas is greenish yellow with a pungent, bleach-like odor and is non-flammable. Use your observations to determine which gas was produced in this experiment. |
|                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                  |
| Hydrogen was produced and it is flammable. The students should have heard a "pop" from the hydrogen gas in the flame.                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                  |
| As gas moved into the pipet bulb, where did the water go?                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                  |
| The water trickled down the side of the tube as it was displaced by the gas.                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                  |
| Explain why the production of a gas in this experiment is or is not different from the formation of water vapor in the heating curve experiment.                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                  |
| It is different because the gas production in the heating curve experiment was the result of a phase change and the gas produced in this experiment was the result of a chemical reaction.                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                  |



Chemicals

HCI

Zn

Data Table 3: Observations of Gas Reactions (SAMPLE ANSWER BELOW)

Observations

Clear, colorless liquid

Silver metal, semi-shiny

| HCl + Zn Reaction | Bubbles form                                                |
|-------------------|-------------------------------------------------------------|
| Gas + Flame       | In the flame, the gas creates a "pop," showing flammability |

# Competency Review

| A phase of matter has no fixed volume or shape.                                                                                  |          |
|----------------------------------------------------------------------------------------------------------------------------------|----------|
| ○ solid                                                                                                                          |          |
| ○ liquid                                                                                                                         |          |
| ○ gas                                                                                                                            | •        |
|                                                                                                                                  |          |
| Intermolecular forces are generally weaker than ionic or covalent bonds.                                                         |          |
| ○ True                                                                                                                           | <b>✓</b> |
| ○ False                                                                                                                          |          |
|                                                                                                                                  |          |
|                                                                                                                                  |          |
| When water molecules interact, the charged hydrogen end of one molecule is attracted to the charged oxygen end of another molecu | le.      |
| opositively, negatively                                                                                                          | <b>~</b> |
| negatively, positively                                                                                                           |          |
|                                                                                                                                  |          |
| Liquids have distinct properties including                                                                                       |          |
|                                                                                                                                  |          |
| surface tension                                                                                                                  |          |
| o viscosity                                                                                                                      |          |
| <ul><li>vapor pressure</li><li>all of the above</li></ul>                                                                        |          |
| all of the above                                                                                                                 | •        |
|                                                                                                                                  |          |
| Crystalline solids have a disorderly configuration of particles.                                                                 |          |
| ○ True                                                                                                                           |          |
| ○ False                                                                                                                          | <b>✓</b> |
|                                                                                                                                  |          |



| A phase change from a gas to a solid is known as                                                                                |          |
|---------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul><li>deposition</li></ul>                                                                                                    | ✓        |
| <ul><li>condensation</li></ul>                                                                                                  |          |
| <ul><li>sublimation</li></ul>                                                                                                   |          |
| <ul><li>vaporization</li></ul>                                                                                                  |          |
| When pressure is decreased, a substance is more likely to undergo                                                               | or       |
| <ul> <li>deposition; condensation</li> </ul>                                                                                    |          |
| melting; freezing                                                                                                               |          |
| vaporization; sublimation                                                                                                       | ~        |
| points during the melting or boiling process.  ono change an increase a decrease                                                | *        |
| In order to determine the melting point of tetradecanol, it was imp                                                             | ortant   |
| the thermometer was attached to the capillary tube                                                                              | <b>✓</b> |
| the water was frozen                                                                                                            |          |
| <ul> <li>the capillary tube was immersed in the water without the thermometer</li> </ul>                                        |          |
| In a heating curve experiment, as temperature is increased over till water is at what phase(s) at or near a temperature of 0°C? | me,      |
| <ul><li>Solid</li></ul>                                                                                                         |          |
| Solid or liquid                                                                                                                 | ✓        |
| □ ○ Liquid or gas                                                                                                               |          |
| ○ Liquid                                                                                                                        |          |
|                                                                                                                                 |          |



| V | Which gas is considered flammable? |          |  |  |
|---|------------------------------------|----------|--|--|
|   | <ul><li>Hydrogen</li></ul>         | <b>~</b> |  |  |
|   | <ul><li>Chlorine</li></ul>         |          |  |  |
|   |                                    |          |  |  |

## **Extension Questions**

If Sara was planning a wedding and wanted to have a sculpture of a heart made of butter at the reception, describe how Sara could test the temperature range at which the heart would remain a solid. (SAMPLE ANSWER BELOW)

Sara would prepare a heating curve for butter, to determine the temperature range that the butter would remain in a solid form, and identify the specific melting point temperature that the butter sculpture would begin to melt.