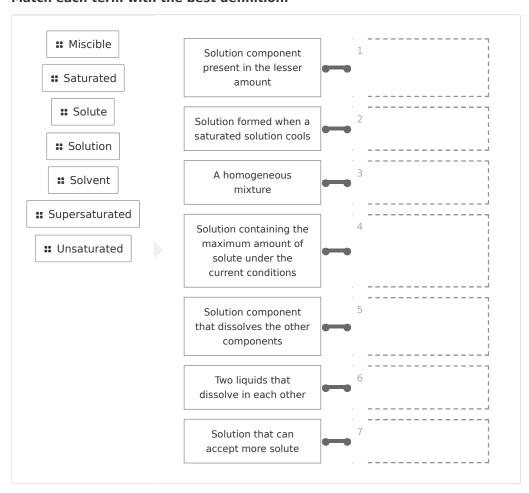
SI Chemistry - Full Discipline Demo

Solubility and Solubility Curves

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best definition.

Correct answers:

- 1 Solute 2 Supersaturated 3 Solution 4 Saturated 5 Solvent
- 6 Miscible 7 Unsaturated

Identify the statements as true or false.

: Ionic compounds dissolve in water as separate cations and anions.
** Nonpolar compounds tend to dissolve in nonpolar solvents.
** Nonpolar molecules contain all nonpolar bonds.
Polar compounds tend to dissolve in nonpolar solvents.
■ Polar molecules contain polar bonds.
superior symmetrical molecules tend to be polar molecules.
True False

Correct answers:

1 Polar molecules contain polar bonds.

Nonpolar compounds tend to dissolve in nonpolar solvents.

Ionic compounds dissolve in water as separate cations and anions.

Nonpolar molecules contain all nonpolar bonds.

Symmetrical molecules tend to be polar molecules.

Polar compounds tend to dissolve in nonpolar solvents.

Complete the sentences with the terms provided.

# Remains unchanged	As temperature increases, solubility for solids: As temperature increases, solubility for gases: As partial pressure decreases, the solubility of solid solutes: 3
Correct answers:	

Exploration

A solution is formed when a is dissolved in a	
solvent; solute	
o solute; solvent	~
solvent; miscible	
o solute; miscible	
Dissolution is a kinetic process defined by rate, and not specific to concentration.	
○ True	✓
False	

The polarity of a compound is dependent upon	
 the presence of polar bonds 	
 the shape of the molecule 	
the presence of polar bonds and the shape of the molecule	~
 the surrounding molecules 	
All ionic compounds are equally soluble in H ₂ O.	
○ True	
○ False	~
The solubility of gaseous solutes as temperature increases.	
increases	
decreases	~
oremains constant	
For most solid solutes, solubility as the temperature goes up.	
o increases	~
decreases	
remains constant	
The solubility of gaseous solutes as temperature increases.	
increases	
increasesdecreases	~

Exercise 1

In the experiment	t, was NH ₄ Cl the solute or the solvent?
The NH ₄ Cl was th	ne solute. The distilled water was the solvent.
	bility curves created for NH4Cl and NaCl. How are they similar to one are they different from each other?
NH ₄ Cl continues t	both chemicals increases with temperature. However, while the solubility of to increase with temperature, the solubility of NaCl does not increase after or without a temperature increase.
	of NH_4Cl can be dissolved in 100.0 mL of H_2O at $10^\circ C$? At $100^\circ C$? You will ate from the experimental curve (that is, extend the lines below and above segment).
For 10°C, approxi	imately 27 g. For 100°C, approximately 62 g.
Define the terms	unsaturated, saturated, and supersaturated.
If a solution is und in the solvent.	saturated, it means that there is room for more solute to be added and dissolved
	turated, it means that the maximum amount of solute is dissolved in the solvent.
If a solution is sup	persaturated, it means that the maximum solubility has been exceeded, typically

by dissolving solute at a higher temperature with a higher solubility and then cooling the solution to a lower solubility.

Using your graph, would 60.00 g NaCl in 100.0 mL $\rm H_2O$ at 100°C be an unsaturated, saturated, or supersaturated solution? How did you reach this conclusion?	

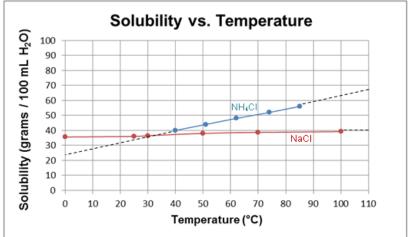
It would be a supersaturated solution. The solubility chart shows that solubility does not increase after 40 g/100 mL of H_2O . Any amount over 40 g/100mL, at any temperature, would be a supersaturated solution.

Using your graph, would 30.00 g NH $_4$ Cl in 100.0 mL H $_2$ O at 80°C be an unsaturated, saturated, or supersaturated solution? How did you reach this conclusion?

It would be an unsaturated solution, as this point would be well under the curve. The solubility chart shows that at 80° C there would need to be approximately 53 g of NH₄Cl in the solution for it to be saturated.

Data Table 1: Experiment Data (SAMPLE ANSWER BELOW)

Experiment Stage	Total Mass of NH ₄ Cl (g)	Volume of Water (mL)	Crystallization Temperature (°C)	Convert to: g / 100.0 mL
1	2.00	5.0	40	40 / 100.0
2	2.20	5.0	51	44 / 100.0
3	2.40	5.0	62	48 / 100.0
4	2.60	5.0	74	52 / 100.0
5	2.80	5.0	85	56 / 100.0


Data Table 2: Solubility and Crystallization Temperature (SAMPLE ANSWER BELOW)

Solubility of NH ₄ Cl (g/100.0 mL H ₂ O)	Crystallization Temperature (°C)
40 / 100.0	40
44 / 100.0	51
48 / 100.0	62
52 / 100.0	74

56 / 100.0 85

Graph 1: Solubility Curve (SAMPLE ANSWER BELOW)

Exercise 2

From your experiment results, Figure 2, and nonpolar? Explain your answer.	Table 1, would you expect Na ₂ SO ₄ to be polar or
	n polar water, but not nonpolar oils. Additionally, ble in water - except for Ag ⁺ , Pb ²⁺ , Ba ²⁺ , Sr ²⁺ , he exception list.
	Is shown in Table 1, would you expect Na ₂ SO ₄ to all all solutions all to all solutions are solutions.
are soluble in water. Therefore, sodium sulfate	cept for silver, lead, barium, calcium, and strontium should be soluble in water. The results of my cause my experiment showed sodium sulfate to be
soluble in water. Use your experimental results to describe th	e polarity (or non-polarity) of corn oil and canola
oil. Explain your reasoning.	
water, the results suggest that both canola oil a	nat neither corn oil nor canola oil were miscible in and corn oil are nonpolar substances. Additionally, ble in canola oil or corn oil. As the simple solubility hat both canola oil and corn oil are nonpolar.
Data Table 3: Solubility Results (SAMPLE ANSWER BELOW)	
Compound Mixture	Soluble or Insoluble?
Distilled $H_2O + Na_2SO_4$	No sample answer
Corn Oil + Na ₂ SO ₄	No sample answer

Canola Oil + Na ₂ SO ₄	No sample answer
Compound Mixture	Miscible or Immiscible?
Distilled H ₂ O + Corn Oil	No sample answer
Distilled H ₂ O + Canola Oil	No sample answer
Canola Oil + Corn Oil	No sample answer

Competency Review

A solvent can be a solid, liquid, or gas, but is most commonly a liquid.	
True False	~
Solubility is defined in terms of and is independent of	
o concentration; rate	~
rate; concentration	
orate; dissolution	
 dissolution; concentration 	
Water is a "polar molecule" which is another term for a dipole.	
○ True	~
O False	
Ionic compounds dissolve in water and are surrounded by water molecu in specific orientations through a process called	les
 dissolution 	
hydration	✓
o miscibility	
supersaturation	

	_ is an ionic compound that is soluble in water.	
	NaNO ₃	
	NaBr	
	NaCl	
	NaNO ₃ and NaBr	
	All of the above	~
	ubility curves are used to determine if a solution is unsaturated, urated, or supersaturated at a specific pressure.	
	True	
	False	~
	solubility of are typically affected by changes in pressure. solids liquids gases All of the above	~
Con (NH test	solids liquids gases	The
Con (NH test	solids liquids gases All of the above sider an experiment to create a solubility curve of ammonium chlor (4Cl). A known amount of water and NH ₄ Cl are added to a test tube. It tube is placed in a hot water bath and then allowed to cool to roor	The
Con (NH test	solids liquids gases All of the above sider an experiment to create a solubility curve of ammonium chlor (4Cl). A known amount of water and NH ₄ Cl are added to a test tube, the tube is placed in a hot water bath and then allowed to cool to room perature. Why is the solution heated and then cooled?	The
Con (NH test tem	solids liquids gases All of the above sider an experiment to create a solubility curve of ammonium chlor (ACI). A known amount of water and NH ₄ CI are added to a test tube. It tube is placed in a hot water bath and then allowed to cool to room (aperature. Why is the solution heated and then cooled? To allow crystallization	The

novice scientist would like to test the solubility of an unknown ompound. She adds a known amount of the compound to a test tube that olds 10 mL of water. She swirls the solution, mixing the substances ogether and places the test tube in a rack. A cloudy film begins to form		
ear the bottom of the test tube. One possible conclusion might be that		
 the compound is miscible in water 		
the compound is insoluble in waterthe compound is polar	·	
 the solution is unsaturated 		
Corn oil is immiscible with water. The oil is a molecule.	refore, it may be concluded that corn	
polar		

Extension Questions

Many power plants and manufacturing facilities generate heat or use high temperatures in their processes. The temperature is often lowered by circulating water around the equipment and discharging this heated water into ponds or rivers. This can lead to raising the temperature of the pond, river or discharge water supply. Raising the temperature of these water sources is termed "thermal pollution." Thermal pollution can affect the ecosystem and cause fish and other aerobic organisms to die. Based on what you know about the temperature effects on gas solubility, explain why the elevated water temperature can kill fish.

(SAMPLE ANSWER BELOW)

Gas solubility decreases in the solvent at elevated temperatures. Fish and other aerobic organisms need oxygen to survive. As the temperature of the water is raised, the amount of dissolved oxygen in the water decreases. If the oxygen levels decrease sufficiently, the fish would essentially suffocate since they would not be able to get enough oxygen.