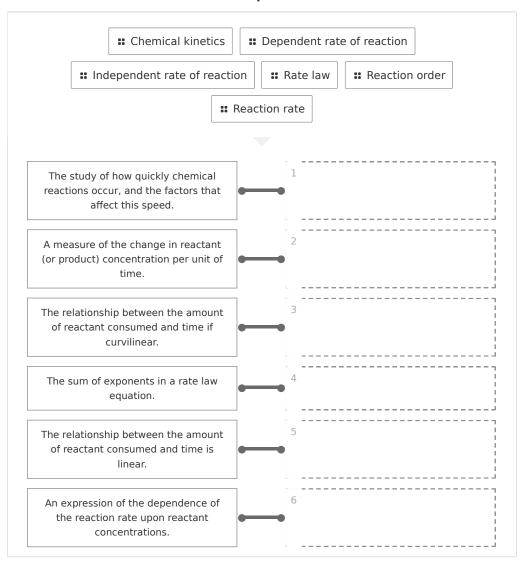
SI Chemistry - Full Discipline Demo

Reaction Order and Rate Laws

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Chemical kinetics 2 Reaction rate 3 Dependent rate of reaction
- 4 Reaction order 5 Independent rate of reaction 6 Rate law

Categorize the descriptions as zero, first, or second order. **::** Reactants appear in the rate law as the concentration of the reactant squared. The rate is independent of the reactant's concentration and that reactant does not appear in the rate law. The reactant will have an exponent of 1. Increasing the concentration of a reactant increases the rate and decreasing the concentration of a reactant decreases the rate. Zero Order First Order Second Order Correct answers: The rate is independent of the reactant's concentration and that reactant does not appear in the rate law. The reactant will have an exponent of 1. Increasing the concentration of a reactant increases the rate and decreasing the concentration of a reactant decreases the rate. 3 Reactants appear in the rate law as the concentration of the reactant squared. **Exploration** Reaction rate is the measure of the change in reactant concentration per unit of time. True False

	Reaction rates may be almost instantaneous or may be billions of years long.	
	○ True	~
	○ False	
	A graph is representative of a dependent reaction rate, whereas a graph is indicative of an independent reaction rate.	
	linear; curvilinear	
	o curvilinear; linear	•
	A first order reactant has an exponent of	
	◎ 1	~
	。 ② 2	
	4	
Exerci	ise 1	
Show yo	ne the reaction order for HCl using calculations described in the backgrou our work. Note that your answer will probably not be a whole number as it es, so round to the nearest whole number.	
that the As long concept backgro	idents are using "In" to determine exponents, and using a subjective measure of a "X" disappears, thus the values could be quite a bit different from where they so as the students show their work, it allows you to know that the student underst t, and the correct calculations to get to the exponential values of the rate law. So bund for calculations. For HCl, the approximate calculation was 0.33 (our tions ranged from 0.27-0.46).	should be. ands the

nat the "X" disappears, s long as the students oncept, and the correct	thus the values of show their work, t calculations to goons. For Na ₂ S ₂ O ₃	could be quite a bit d it allows you to know get to the exponentia	g a subjective measure of the time lifferent from where they should be v that the student understands the Il values of the rate law. See alculation was 1.3 (our calculations
ite the rate law for t	he reaction betv	veen HCl and Na ₂ S ₂	2O ₃ .
hould be similar to: Ra	_		
ing the following rate culate k (with units):		perimental values	given in the question figures,
$tte = k[F_2][ClO_2]$			
	[F ₂] (M)	[CIO ₂] (M)	Initial Rate (M/s)
Experiment 1	0.50	0.50	0.300
Experiment 2	0.80	0.80	0.768
	0.50	0.80	0.480
Experiment 3			

Describe sources of error in this experiment.

Potential errors in this experiment include: subjectivity (when the "X" disappears), some small droplets may remain in the pipet or wells when transferring the chemical from one well to another well of the 24-well plate, unequal drop size, or the timer may not always be pushed at exactly the same time that the pipet is squeezed (may be just a little off because of human error).

Data Table 1: Varying Concentrations of HCI (SAMPLE ANSWER BELOW)

(SAMI LE ANSWER BELOW)			
	Well #C1, D1	Well #C2, D2	Well #C3, [
# of Drops of HCl	12	6	4
# of Drops of H ₂ O	0	6	8
# of Drops of Na ₂ S ₂ O ₃	8	8	8
Concentration (M) of HCl Stock Solution	1.0	1.0	1.0
Concentration (M) of Na ₂ S ₂ O ₃ Stock Solution	0.30	0.30	0.30
Reaction Concentration (M) of HCl after Mixing in Well	0.60	0.30	0.20
Reaction Concentration (M) of $\mathrm{Na_2S_2O_3}$ after Mixing in Well	0.12	0.12	0.12
Trial 1 Reaction Time (sec)	46.59	50.56	67.78
Trial 2 Reaction Time (sec)	49.91	48.66	62.81
Average Reaction Time (sec)	48.25	49.61	65.14
Reaction "Rate" (sec ⁻¹)	0.021	0.020	0.015

Data Table 2: Varying Concentrations of Na2S2O3 (SAMPLE ANSWER BELOW)

	Well #C4, D4	Well #C5, D5	Well #C6, D6
# of Drops of HCl	8	8	8
# of Drops of H ₂ O	0	6	8
# of Drops of Na ₂ S ₂ O ₃	12	6	4
Concentration (M) of HCI Stock Solution	1.0	1.0	1.0
Concentration (M) of Na ₂ S ₂ O ₃ Stock Solution	0.30	0.30	0.30
Reaction Concentration (M) of HCl after Mixing in Well	0.40	0.40	0.40
Reaction Concentration (M) of $Na_2S_2O_3$ after Mixing in Well	0.18	0.090	0.060
Trial 1 Reaction Time (sec)	25.12	56.53	104.59
Trial 2 Reaction Time (sec)	24.87	53.57	103.69
Average Reaction Time (sec)	25.00	55.05	104.14

Reaction "Rate" (sec ⁻¹)	0.040	0.018	0.0096
ricación riado (see)			

Competency Review

Reaction rates may be on the concentration of a reactant.	
dependent	
independent	
 dependent or independent 	•
The rate constant and the exponents of the rate law equation can be determined merely by looking at a balanced chemical equation.	
True	
○ False	~
Determining the reaction rate of a chemical reaction is useful for the development of drugs and the manufacturing of chemicals.	
○ True	✓
• False	
The speed of a chemical reaction is called	
 chemical kinetics 	
the reaction rate	✓
the reaction order	

Reactants that are ____ will appear in the rate law as the concentration of the reactant squared.

zero order

first order

second order

fourth order

For the reaction of hydrochloric acid and sodium thiosulfate, the rate law is written as ____.

 $\bigcirc Rate = k [HCI]^m [Na_2S_2O_3]^n$

 \bigcirc Rate = k [HCl + Na₂S₂O₃]

 \bigcirc Rate = t [HCl]^a [Na₂S₂O₃]^x

 \bigcirc Rate = t [HCl + Na₂S₂O₃]

Extension Questions

In the lab activity, the reaction rate was determined by the appearance of a product. However, the reaction rate can also be determined by the disappearance of a reactant.

Rate =
$$\frac{\Delta [\text{Product}]}{\Delta t}$$
 or Rate = $\frac{-\Delta [\text{Reactant}]}{\Delta t}$

In each situation below, you are given a rate measured by the appearance of one component of the reaction and are asked to predict the rate of appearance or disappearance of another component, based on logic and stoichiometric relationships. For example, if the reaction is as follows:

$$A + 2B \rightarrow Products$$

For every mole of A that is used, 2 moles of B are used so the rate of disappearance of B is twice the rate of the disappearance of A. This may be expressed as:

Rate
$$=\frac{-\Delta[\mathrm{B}]}{\Delta t}=\frac{-2[\mathrm{A}]}{\Delta t}$$

Apply this information to the following scenarios:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The reaction rate is measured as 0.032 M NH_3/s . Determine the rate of disappearance of N_2 and the rate of disappearance H_2 . Explain how you arrived at your answers.

$${
m CH_4(g) + 2O_2(g) o CO_2(g) + 2H_2O(g)}$$

The reaction rate is measured as -2.6 M CH_4/s . Determine the rate of appearance of CO_2 and the rate of appearance of H_2O . Explain how you arrived at your answers.

(SAMPLE ANSWER BELOW)

One mole of N_2 is used for every 2 moles of ammonia that appear, making the rate of disappearance of nitrogen half the rate of appearance of ammonia. Rate = 0.016M N_2 /s. Three moles of hydrogen are used for every 2 moles of ammonia that appear, which makes the rate of disappearance of hydrogen 3/2 the rate of appearance of ammonia. Rate = 0.048 M H_2 /s One mole of carbon dioxide is produced for every mole of methane that is used. Rate = 2.6 M CO_2 /s. Two moles of water are produced for every mole of methane that is used. Rate = 5.2 M

H₂O/s.