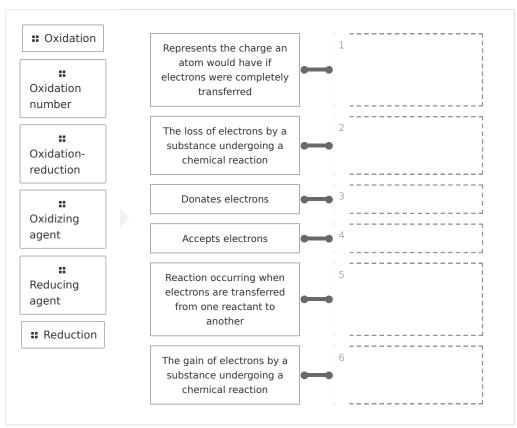
SI Chemistry - Full Discipline Demo

Oxidation-Reduction Activity Series


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Oxidation number 2 Oxidation 3 Reducing agent
- 4 Oxidizing agent 5 Oxidation-reduction 6 Reduction

Identify the statements as true or false.

::

An activity series is a list of metals from most easily oxidized to least easily oxidized.

::

Atoms move from lower energy to higher energy locations during a chemical reaction.

::

In a single displacement reaction, an element reacts with a compound and part of the compound is released to become a free element.

Spectator ions are both oxidized and reduced during a chemical reaction.

True	False
	T
1	1 2
	1
I	1
l	L

Correct answers:

1

In a single displacement reaction, an element reacts with a compound and part of the compound is released to become a free element.

An activity series is a list of metals from most easily oxidized to least easily oxidized.

2

Atoms move from lower energy to higher energy locations during a chemical reaction.

Spectator ions are both oxidized and reduced during a chemical reaction.

Exploration

electrons were completely transferred.	
○ True	~
False	
Oxidation is the of electrons by a substance undergoing a chemic reaction. Reduction is the of electrons by a substance undergoing chemical reaction.	
o loss; gain	~
gain; loss	
gain; gain	
o loss; loss	
MgCl ₂ is composed of magnesium ion(s) and chloride ion(s).	
O 2; 1	
○ 1; 2	✓
1; 1	
2; 2	
Chromium is more active than gold.	
○ True	~
○ False	
rcise 1	
icisc i	reduction

decrease in the oxidation number. Define oxidizing agent, reducing agent, and spectator ion. The oxidizing agent accepts electrons and the reducing agent donates electrons. A spectator ion neither donates nor accepts electrons. In the reaction of copper and silver nitrate, a new substance appeared in the test tube. Describe the physical appearance of the substance and identify its chemical formula. The physical substance that appeared was pure silver. It looked drab and silver-gray colored; it appeared fluffy and accumulated on the outside of the copper pieces. The chemical symbol (or formula) for pure silver is Ag. Given an activity series in which the most active metals are at the top of the list and the least active metals are at the bottom of the list, would copper be listed above silver or would silver be listed above copper? Support your answer with data from Data Table 1.

Copper would be listed above silver because copper has a greater ease of oxidation. As shown in

Oxidation number- the charge an element would have if electrons were fully

Oxidation causes an increase in the oxidation number and reduction causes a

Oxidation- when an element loses electrons. Reduction- when an element gains electrons.

transferred.

Data Table 1, copper is oxidized by silver.

Solid copper sulfide and silver nitrate react to form copper (II) nitrate and solid silver sulfide. Write a balanced chemical equation that describes the reaction. Identify the oxidation number of each element in the reaction. (You do not need to include the total contribution of charge.) Is this reaction a redox reaction or a non-redox reaction? Explain your answer.

$$ext{CuS(s)} + 2 ext{AgNO}_3(ext{aq}) o ext{Cu(NO}_3)_2(ext{aq}) + ext{Ag}_2 ext{S(s)} \ +2 ext{-2} \ +1 ext{+5-2} \ +2 ext{+5-2} \ +1 ext{-2}$$

The reaction is non-redox reaction because the oxidation numbers of the elements do not change, and therefore no electrons are donated or accepted. (A redox reaction is defined as a reaction in which electrons are transferred.)

Data Table 1: Redox Reaction of Copper and Silver Nitrate (SAMPLE ANSWER BELOW)

ELOW)
$AgNO_3\ is\ a\ clear,\ colorless\ liquid;\ Cu\ is\ a\ shiny,\ copper-colored\ metal$
Small crystals form on the copper and begin to blacken
$The\ solution\ is\ slightly\ blue-green.\ A\ silver\ solid\ has\ formed\ around\ the$
Copper
Silver
Nitrate
Silver ion
Copper

Photo 1: Chemical Equation for Redox of Copper and Silver Nitrate. Note: Copper has a +2 oxidation number in the products. Silver has its expected oxidation number on the reactons side.

(SAMPLE ANSWER BELOW)


```
Cu(s) + 2 AgNO<sub>3</sub> \rightarrow Cu(NO<sub>3</sub>/<sub>2</sub> + 2Ag(s)

0 +1+5-2 +2 +5-2 0

0 +1+5-6 +2 +10-12 0
```

Exercise 2

elemen	t is pure and the oxidation number when each element is in a compound.
	Copper: pure copper = 0; copper in compound = +2 Lead: pure lead = 0; lead in compound = +2 Zinc: pure zinc = 0; zinc in compound = +2
	of the metals in Exercise 2 was the strongest oxidizing agent? Was there an instance his metal also acted as a reducing agent? Explain your answer using data from Data
Conno	was the strongest oxidizing agent. The chemical equations in Data Table 2 show that
copper	tends to accept electrons from the other metals. There is no instance where copper acts as zing agent to donate electrons.
	of the metals in Exercise 2 was the strongest reducing agent? Was there an instance his metal also acted as an oxidizing agent? Explain your answer using data from Data
tends t	as the strongest reducing agent. The chemical equations in Data Table 2 show that zinc to donate electrons to the other metals. There is no instance where zinc acts as an oxidizing to accept electrons.
	es ease of oxidation correlate with activity? Do highly active metals tend to donate as or accept electrons from other metals?
Highly	active metals have a high ease of oxidation and less active metals have a lesser ease of

Create an activity series for copper, lead, and zinc. Place the most active metal at the top of the list.	f
Zinc Lead Copper	

Data Table 2: Redox Reactions of Copper, Lead, and Zinc (SAMPLE ANSWER BELOW)

(SAIVIFLE	ANSW	ER BELOW)		
Solid Metal	Well ID	Solution	Immediate Observation	30 Minute Observation
Cu	A1	Pb(NO ₃) ₂	No change	No change
Cu	A2	Zn(NO ₃) ₂	No change	No change
Pb	B1	CuSO ₄	Metal is slightly darker color	Metal is a darker color
Pb	B2	Zn(NO ₃) ₂	No change	No change
Zn	C1	CuSO ₄	Metal is a darker color	Solid coating covering entire metal, appears rust colored and looks somewhat spiky or fluffy
Zn	C2	Pb(NO ₃) ₂	Instant formation of darker coating	Soft dark silver coating appears on all surfaces of the metal

Data Table 3: Potential Redox Reactions and Chemical Equations (SAMPLE ANSWER BELOW)

Metal and Metallic Solution	Reaction Occurred?
$Cu + Pb(NO_3)_2$	$No\ reaction$
$Cu + Zn(NO_3)_2$	$No\ reaction$
Pb + CuSO ₄	Yes
Pb + Zn(NO ₃) ₂	$No\ reaction$
Zn + CuSO ₄	Yes
$Zn + Pb(NO_3)_2$	Yes

Photo 2: Chemical Equations and Redox Numbers for Reactions (SAMPLE ANSWER BELOW)

$$Pb + CuSO_4 \rightarrow PbSO_4 + Cu$$

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

$$Zn + Pb(NO_3)_2 \rightarrow Zn(NO_3)_2 + Pb$$

Competency Review

The oxidation number is often referred to as the	
o redox factor	
oxidation state	~
spectator ion	
 reducing factor 	
A redox reaction occurs when electrons are transferred from one eleme to another.	nt
○ True	~
■ False	
Oxidation and reduction may occur alone in a chemical reaction.	
○ True	
False	~
When a substance is in its elemental form (existing alone without bonds other elements), the oxidation number is	s to
0	~
0 1	
2	
○ 3	
The sum of the oxidation numbers within a formula is equal to the overa charge of the formula.	all
○ True	✓
False	

A spectator ion is during a chemical reaction.	
oxidized	
reduced	
 both oxidized and reduced 	
neither oxidized nor reduced	~
During an oxidation-reduction experiment, why is it important to obset the reaction after 30 minutes?	erve
The solution and solid look different after 30 minutes than when the reaction begins.	
 The reaction requires time to complete. 	
 Silver continues to precipitate for 30 minutes. 	
All of the chave	~
All of the above	·
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) Oxidizing agent	:he ✓
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), t silver acts as a(n)	
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) Oxidizing agent	
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) oxidizing agent reducing agent	
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) oxidizing agent reducing agent spectator ion	*
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) oxidizing agent reducing agent spectator ion All of the above	*
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) oxidizing agent reducing agent spectator ion All of the above If during an experiment zinc was found to be more reactive than lead copper, zinc would be considered the strongest	*
In the redox reaction of silver nitrate (AgNO ₃) and solid copper (Cu), to silver acts as a(n) oxidizing agent reducing agent spectator ion All of the above If during an experiment zinc was found to be more reactive than lead copper, zinc would be considered the strongest oxidizing agent	or

Extension Questions

Redox reactions occur in many everyday experiences. Three examples of common redox reactions that everyone is familiar with are outlined below. Write the chemical equation for each of these reactions and identify the oxidizing agent and the reducing agent. Note: If needed, consult a web source to determine the reaction.

- a. When silver jewelry or silverware tarnishes, it is reacting with S in the air to undergo a redox reaction.
- b. When someone leaves a screwdriver sitting outside and it rusts, the iron in the screwdriver underwent a redox reaction.
- c. The process of photosynthesis, which causes green plants to react with sunlight to form oxygen, is an example of a redox reaction.

(SAMPLE ANSWER BELOW)

a. $2Ag(s) + S(g) \rightarrow Ag_2S(s)$ Ag = reducing agent, S = oxidizing agent

b. $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$

Fe = reducing agent, O_2 = oxidizing agent.

Note: The formation of rust actually can be more complicated and involve reaction with OH⁻ ions and form several different iron oxides.

c. $6CO_2 + 6H_2O$ (+ light energy) $\rightarrow C_6H_{12}O_6 + 6O_2$ $CO_2 = \text{oxidizing agent}$, $H_2O = \text{reducing agent}$

