SI Chemistry - Full Discipline Demo

Ideal Gas Law

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

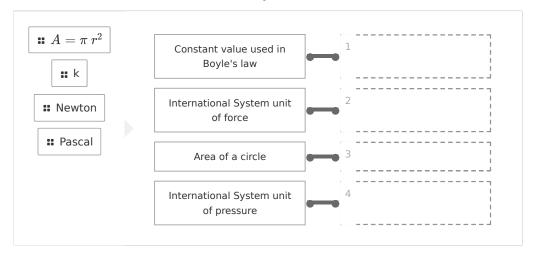
Classify each statement as true or false.

	# A graph of volume versus 1/pressure displays a linear relationship.				
	law describes the relationship of a gas's pressure and temperature at twolume.				
	## Force is equal to mass times acceleration.				
	# Gas particle collisions decrease as volume decreases.				
	: Pressure is the ratio of force per unit area.				
	True False				
±	' 				

Correct answers:

1 Force is equal to mass times acceleration.

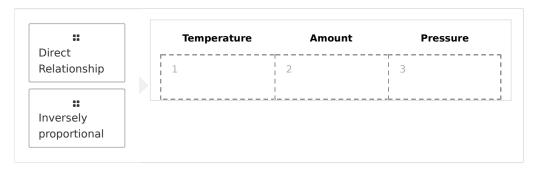
Pressure is the ratio of force per unit area.


A graph of volume versus 1/pressure displays a linear relationship.

2

Boyle's law describes the relationship of a gas's pressure and temperature at constant volume.

Gas particle collisions decrease as volume decreases.


Match each term with the best description.

Correct answers:

1 k 2 Newton
3
 $A=\pi\,r^2$ 4 Pascal

According to the ideal gas law, match the relationship between the following properties and how they relate to volume of an ideal gas.

Correct answers:

- 1 Direct Relationship 2 Direct Relationship
- 3 Inversely proportional

Exploration

The gas phase of matter has no fixed volume or shape.	
O True	~
False	
What is the relationship between temperature and volume?	
Inverse	
Direct	✓
No Relationship	
	, the
For defining standard temperature and pressure of an ideal gas, what is temperature for STP?	tne
○ 0 K	
○ 100 K	
○ 273 K	✓
○ 1000 K	
The relationship between volume and moles for an ideal gas is a direct relationship.	
○ True	✓
○ False	
When volume of gas in a closed system decreases, the pressure of the gin the system	jas
decreases	
o increases	✓
remains constant	

When	n pressure is plotted against volume, the relationship is	
O li	linear	
0 n	nonlinear	/
e	exponential	
S	static	
Press	sure is dependent upon	
○ n	mass	
(a	acceleration due to gravity	
○ s	surface area of the force	
	All of above	/
A Nev	wton is the International System unit of pressure.	
ОТ	True	
O F	False	/
Exercise 1		
	law, including the associated equation(s).	
Boyle's law pressure and or $P_1V_1 = P_2$	states that when a fixed amount of an ideal gas is maintained at a constant temperated volume of the gas are inversely proportional (when one increases, the other decrea P_2V_2 .	ture, the ses). $PV = k$
What are sour	rces of error for this experiment?	

Sources of error include improperly reading the volume of the apparatus, weighing errors with the books, measurement errors from calculating the area of the piston, and air leakage from the apparatus.

Would you expect your experimental results to change if a different gas, such as ${\rm CO_2}$, were used instead of air? Explain your answer.
There should not be a difference in the concept; the gas laws (including Boyle's Law) can be applied to all gases.
How does Graph 2 illustrate Boyle's law?
Graph 2 indicates a linear relationship between P and 1/V. The pressure of the gas is inversely proportional to its volume.
A gas sample in a Boyle's law apparatus is compressed to a volume of 22.0 mL. If its original volume was 37.0 mL at 12,000 Pa, what is the new pressure of the gas sample. Show your calculations.
$P_1V_1 = P_2V_2$
$P_2 = (P_1 V_1)/V_2 = (37.0 \text{ mL} \times 12,000 \text{ Pa})/22.0 \text{ mL}$ $P_2 = 20,000 \text{ Pa}$

Data Table 1: Calculating Force (SAMPLE ANSWER BELOW)

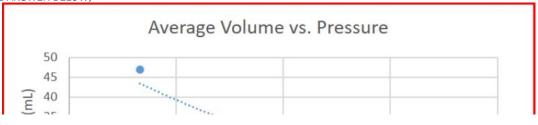
(S) WHI EE / WONER BEEST/			
Book #	Mass of Book (kg)	Force (N)	
1	2.03	19.9	
2	2.32	22.8	

3	2.43	23.8
4	2.38	23.4
5	2.41	23.6

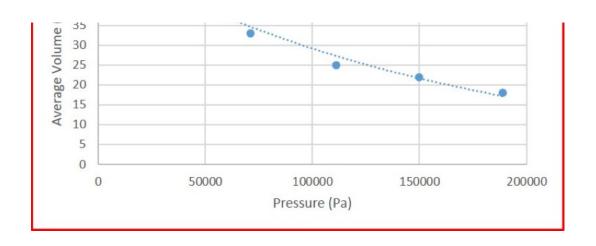
Data Table 2: Calculating Surface Area (SAMPLE ANSWER BELOW)

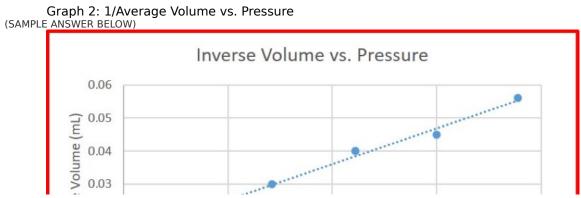
(8, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	
Diameter of Syringe (mm)	27
Diameter of Syringe (m)	0.027
Radius of Syringe (m)	0.014
Surface Area of Syring Tip (m ²)	0.0006

Data Table 3: Calculating Pressure (SAMPLE ANSWER BELOW)

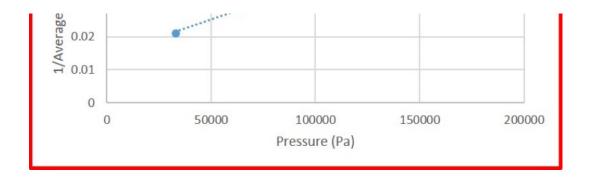

(SAMPLE ANSWER BELOW)		
Book #	Pressure (Pa)	
1	33,000	
2	38,000	
3	40,000	
4	39,000	
5	39,000	
1 and 2	71,000	
1,2, and 3	111,000	
1,2,3, and 4	150,000	
1,2,3,4, and 5	189,000	

Data Table 4: Volume and Inverse Volume


(SAMPLE ANSWER BELOW)


Book #	Volume: Trial 1 (mL)	Volume: Trial 2 (mL)	Volume: Trial 3 (mL)	Average Volume V _{avg} (mL)	1/Average Volume 1/V _{avg} (1/mL)
1	47	48	45	47	0.021
1,2	32	33	33	33	0.030
1,2,3	25	25	25	25	0.040
1,2,3,4	22	22	22	22	0.045
1,2,3,4,5	18	19	17	18	0.056

Graph 1: Average Volume vs. Pressure (SAMPLE ANSWER BELOW)



Exercise 2

Explain Charles Law. Which variables were held constant in this exercise?

In this experiment the two variable that were tested were temperature and volume. Using the Ideal gas law the amount (moles) and the pressure (atm) were assumed to be kept constant throughout the experiment.

Based on the results you obtained in the Charles Law experiment, if a gas was allowed to heat to 200°C, how would the volume of the gas change?

If the gas was heat from 24°C or 100°C to 200°C this means that the gas is increasing in temperature. Charles Law state that temperature and volume are directly proportional so the gas would increase in volume as the temperature increased.

Data Table 5: Small Tube with Insertable Cap, 12x75 mm (SAMPLE ANSWER BELOW)

	Data
Temperature of gas at boil inside tube (°C) T_1	90.0
Temperature of gas at room temperature (°C) T ₂	17.8
Volume of water partially filling tube (mL) V_p	2.3
Volume of gas in tube at boil (mL) V_1	4.8
Volume of gas in tube at room temperature (mL) V_2	2.5

Data Table 6: Volumetric Flask (SAMPLE ANSWER BELOW)

	Data
Temperature of gas at boil inside flask (°C) T_1	91.9
Temperature of gas at room temperature (°C) T ₂	16.4
Volume of water partially filling flask (mL) V_p	4.9
Volume of gas in flask at boil (mL) V_1	27.4
Volume of gas in flask at room temperature (mL) V ₂	22.5

Data Table 7: Small Tube with Flat Cap, 12x75 mm $_{\mbox{(SAMPLE ANSWER BELOW)}}$

	Data
Temperature of gas at boil inside tube (°C) T_1	91.0
Temperature of gas at room temperature (°C) T ₂	16.0
Volume of water partially filling tube (mL) V_p	2.3
Volume of gas in tube at boil (mL) V_1	4.9
Volume of gas in tube at room temperature (mL) V_2	2.6

Data Table 8: Large Tube, 17x100 mm (SAMPLE ANSWER BELOW)

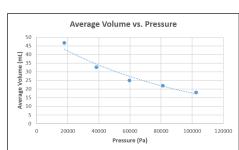
	Data
Temperature of gas at boil inside tube (°C) T_1	90.9
Temperature of gas at room temperature (°C) T ₂	16.0
Volume of water partially filling tube (mL) V_p	4.2
Volume of gas in tube at boil (mL) V_1	14.8
Volume of gas in tube at room temperature (mL) V ₂	10.6

Competency Review

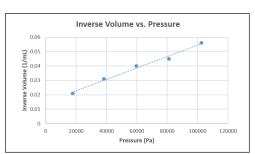
Gas particles in a closed system	
are in constant motion	
move randomly	
 collide with one another and the sides of the container 	
All of the above	✓
A graph that describes the relationship of volume versus the inverse of pressure (1/P) displays a linear relationship.	value
○ True	~
○ False	
The International System unit of force is the, and the unit of pre is the	ssure
	ssure ✓
is the	
Newton; Pascal	~
is the Newton; Pascal Pascal; Newton A syringe is filled with gas and sealed to create a closed system. Wha	~
is the Newton; Pascal Pascal; Newton A syringe is filled with gas and sealed to create a closed system. Wha happen when the plunger of the syringe is depressed?	~
is the Newton; Pascal Pascal; Newton A syringe is filled with gas and sealed to create a closed system. Wha happen when the plunger of the syringe is depressed? The volume of the gas will increase.	~

The diameter and radius of the syringe were measured to determine the ____ of the Boyle's law apparatus.

surface area


volume

mass


All of the above

Which scatter plot describes a linear relationship?

A:

B:

A

B

Both A and B

O Neither A nor B

At a constant temperature the volume of a gas is increased ten times, resulting in the pressure of the gas ____.

decreasing by 10 times

decreasing by 20 times

increasing by 10 times

remaining constant

A phase of matter has no fixed volume or shape.	
solid	
liquid	
○ gas	~
Charles Law states that and are directly proport	ional.
Temperature; Volume	~
Volume; Amount	
Volume; Pressure	
Temperature; Pressure	
In the ideal gas law equation, what unit of measurement volume? ounce moles	represents
<pre>volume? milliter liter ounce moles Avogadro's Law states that the relationship between directly proportional. amount; temperature temperature; volume</pre>	*
volume? milliter liter ounce moles Avogadro's Law states that the relationship between directly proportional. amount; temperature	•

_	states that temperature and pressure are directly proportional.	
	Boyle's Law Charles' Law	
	Gay-Lussac's law	~
	Avogadro's Law	

Extension Questions

A car engine it is powered by the burning of octane (C_8H_{18}) with oxygen (O_2). The combustion reaction forms carbon dioxide (CO_2) and water (H_2O).

- a) write a balanced chemical equation for this combustion reaction.
- b) Assuming a reaction starts with 1 mole of octane, which burns at 220°C, and is at a pressure of 1 atm, what volume will the products occupy upon reaction completion?

(SAMPLE ANSWER BELOW)

- a. The balenced chemical equation is 2C8H18 + 25 O2 --> 16 CO2 + 18 H2O
- b. 1 mole of C8H18 yields 8 moles CO2 and 9 moles H2O with a total of 17 moles. Solving the ideal gas equation PV = nRT
- V = 17 moles (0.082 L*atm/K*mol)(493K)/(1atm)
- V = 687 L