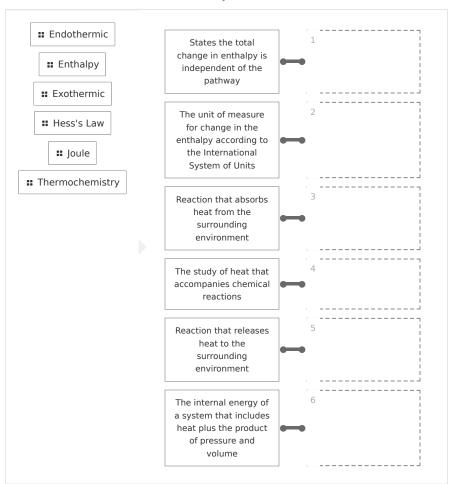
SI Chemistry - Full Discipline Demo

Hess's Law


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

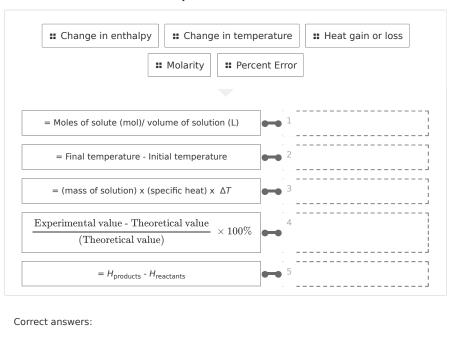
- 1 Hess's Law 2 Joule 3 Endothermic 4 Thermochemistry
- 5 Exothermic 6 Enthalpy

Categorize each statement as representing an exothermic or endothermic reaction.

# Heat is absorbed from sur	rroundings Heat is released to surroundings
∷ Temperature d	decreases
:: The chang	ge in enthalpy is a negative number
:: The change in enthalpy is a positive number	
Exothermic	Endothermic
1	2

Correct answers:

1 Heat is released to surroundings Temperature increases


The change in enthalpy is a negative number

2 Heat is absorbed from surroundings Temperature decreases

The change in enthalpy is a positive number

Match term with the correct equation.

- 1 Molarity 2 Change in temperature 3 Heat gain or loss
- 4 Percent Error 5 Change in enthalpy

Exploration

When an reaction occurs in an aqueous solution, heat will be releas to the water.	sed
endothermic	
exothermic	~
Enthalpy is the external energy of the system, <i>E</i> , which includes heat plother the product of pressure and volume.	us
True	
False	~
The change in enthalpy of a reaction is equal to the enthalpy of the reactants minus the enthalpy of the products.	
True	
False	~

	reactants.	
	greater than	
	○ less than	✓
	equal to	
	Hess's law states that the total change in enthalpy is independent of the pathway.	
	○ True	✓
	○ False	
	Se 1 ere the maximum temperatures for each of the reactions? Use the scatter , Graph 2, and Graph 3 to support your answers.	plots in
The ma	ximum temperatures for each of the reactions were 37.4, 25.5, and 35.2 respec	tively.
for each	e the heat loss or heat gain of the 3 solution mixtures ($q_{\rm rxn}$). Then calcular reaction. Write the calculations on a sheet of paper showing all of your wf your work for each reaction and upload the images into Photo 1, Photo 2	ork. Take a
First Rea	ction:	

$$NaOH(aq) + HCl(aq) \rightarrow H_2O(l) +$$

$$2M = \frac{2 \text{ moles}}{1 \text{ Liter}} \times \frac{1 \text{ Liter}}{1000 \text{ mL}} \times 10 \text{ mL} =$$

Density =
$$\frac{1.02 \text{ g}}{1 \text{ mH}} \times 20 \text{ mH} = 20.4 \text{ g} =$$

$$q_{rxn} = (20.4 \text{ g}) \times (4.184 \text{J/g} \,^{\circ}\text{C}) \times (-13.4 \,^{\circ}$$

$$\Delta H = -1.14 \text{ kJ}/0.02 \text{ mol} = -57 \text{ kJ}/1$$

Second Reaction:

 $NaOH(aq) + NH_4Cl(aq) \rightarrow NH_3(\xi$

$$2M = \frac{2 \text{ moles}}{1 \text{ Liter}} \times \frac{1 \text{ Liter}}{1000 \text{ mL}} \times 10 \text{ mL} =$$

Density =
$$\frac{1.02 \text{ g}}{1 \text{ m/L}} \times 20 \text{ m/L} = 20.4 \text{ g} =$$

$$q_{rxn} = (20.4 \text{ g}) \times (4.184 \text{J/g} \,^{\circ}\text{C}) \times (-0.7)^{\circ}$$

$$\Delta H = -0.060 \text{ kJ}/0.02 \text{ mol}$$

Third Reaction:

$$NH_3(aq) + HCl(aq) \rightarrow N$$

$$2M = \frac{2 \text{ moles}}{1 \text{ Liter}} \times \frac{1 \text{ Liter}}{1000 \text{ mL}} \times 10 \text{ mL} =$$

Density =
$$\frac{1.02 \text{ g}}{1 \text{ mH}} \times 20 \text{ mH} = 20.4 \text{ g} =$$

$$q_{rxn} = (20.4 \text{ g}) \times (4.184 \text{J/g} \,^{\circ}\text{C}) \times (-10.2 \text{J})$$

$$\Delta H = -0.875 \text{ kJ}/0.02 \text{ mol} =$$

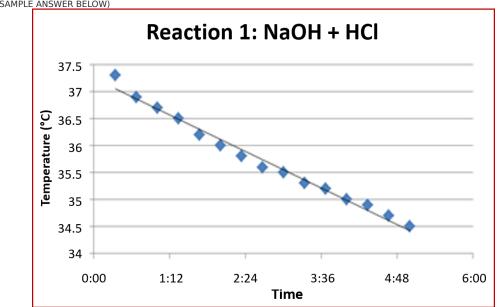
Use Hess's law and your determination of ΔH for the first 2 reactions to determine ΔH for the third reaction:

NH₃ + HCl → NH₄Cl.

Because the second reaction is reversed to get the third, the sign from the second reaction will change to a positive value instead of a negative value (see the background section for addition of the reactions). Therefore, you sum (-57 kJ) + (3 kJ) = -54 kJ.

Compare the results of question 3 with the experimental results of the reaction:
NH ₃ + HCl → NH ₄ Cl (calculate the percent error)
Percent Error = [(-54 kJ / mol) - (-43.75 kJ / mol)] / (-43.75 kJ / mol) x 100% = 30.3%
Use the thermodynamic quantities given below to calculate the theoretical A H for this
reaction:
NH ₃ + HCl → NH ₄ Cl
• ΔH°_f for NH ₃ (aq) = - 80.29 kJ/mol
• ∆ H° _f for HCl (aq) = - 167.2 kJ/mol
• ΔH°_{f} for NH_4^+ (aq) = - 132.5 kJ/mol
• A H° _f for Cl ⁻ (aq) = - 167.2 kJ/mol
The theoretical $\Delta H = -52.2 \text{ kJ}$
What is the payont array of arrayimental regults when using the the exetical value calculates
What is the percent error of experimental results when using the theoretical value calculated in Question 5?
Percent Error = [(-43.75 kJ / mol) - (-52.2 kJ / mol)] / (-52.2 kJ / mol) x 100% = 16.2%
Were the reactions performed in this laboratory exercise exothermic or endothermic? How could you determine this?
The reactions were exothermic because they released heat (the temperature rose).

Define Hess's law. Did your experimental results support Hess's law? Us explain your answer.	se your data to
Hess's Law states that if a reaction is the sum of two or more other reactions, the ΔH for must be the sum of the ΔH values of the constituent reactions. The thermal energy abschemical process reflects a difference between the enthalpy, the reactants and product	orbed or produced by a
Student answers may vary somewhat when using data to support or refute Hess's Law. the enthalpies of the intermediate reactions were comparable to that of the system as 30.3% error in the experimental values.	
What are some possible sources of error in this experiment?	
what are some possible sources of error in this experiment.	
what are some possible sources of error in this experiment.	
what are some possible sources of error in this experiment.	
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am getting the exact temperature when first mixing the two chemicals.	
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am	
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am	
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am getting the exact temperature when first mixing the two chemicals. Data Table 1: Temperature (°C) of the Solution (NaOH + HCl)	
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am getting the exact temperature when first mixing the two chemicals. Data Table 1: Temperature (°C) of the Solution (NaOH + HCI) (SAMPLE ANSWER BELOW)	bient air, or not
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am getting the exact temperature when first mixing the two chemicals. Data Table 1: Temperature (°C) of the Solution (NaOH + HCI) (SAMPLE ANSWER BELOW) Initial Temperature of NaOH (°C)	bient air, or not
Possible sources of error include heat escaping from the calorimeter, the the capturing the temperature of the liquid correctly, the temperature of the am getting the exact temperature when first mixing the two chemicals. Data Table 1: Temperature (°C) of the Solution (NaOH + HCI) (SAMPLE ANSWER BELOW) Initial Temperature of NaOH (°C)	23.4

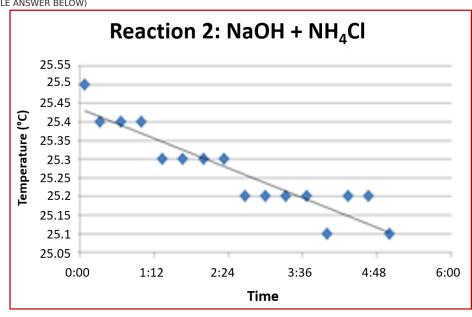

Data Table 2: Temperature of Solution Every 20 Seconds (SAMPLE ANSWER BELOW)

(S/II-II EE /IIISWEIT BEESIT)	
Time after mixing (min:sec)	Temperature (°C)
Initial	37.3
0:20	37.3
0:40	36.9
1:00	36.7
1:20	36.5
1:40	36.2
2:00	36.0
2:20	35.8
2:40	35.6

3:00	35.5
3:20	35.3
3:40	35.2
4:00	35.0
4:20	34.9
4:40	34.7
5:00	34.5

Graph 1: Reaction 1 (NaOH + HCI)
(SAMPLE ANSWER BELOW)

Data Table 3: Temperature (°C) of the Solution (NaOH + NH4Cl)


(SAMPLE ANSWER BELOW)

Initial Temperature of NaOH (°C)	25.4
Initial Temperature NH ₄ Cl (°C)	24.2
Average Initial Temperature (°C)	24.8
Highest Temperature of Mixture (May Be Extrapolated from Graph) (°C)	25.5
Change in Temperature of Mixture (°C), ΔT	0.7

Data Table 4: Temperature of Solution Every 20 Seconds (SAMPLE ANSWER BELOW)

Time after mixing (min:sec)	Temperature (°C)
Initial	25.5
0:20	25.4
0:40	25.4
1:00	25.4
1:20	25.3
1:40	25.3
2:00	25.3
2:20	25.3
2:40	25.2
3:00	25.2
3:20	25.2
3:40	25.2
4:00	25.1
4:20	25.2
4:40	25.5
5:00	25.1

Graph 2: Reaction 2 (NaOH + NH4Cl) (SAMPLE ANSWER BELOW)

Data Table 5: Temperature (°C) of the Solution (NH3 + HCI) (SAMPLE ANSWER BELOW)

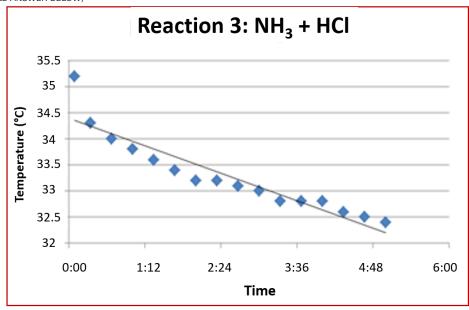
Initial Temperature of NH3 (°C)

Initial Temperature HCI (°C)

Average Initial Temperature (°C)

Highest Temperature of Mixture (May Be Extrapolated from Graph)(°C)

Change in Temperature of Mixture (°C), ΔT 10.25


Data Table 6: Temperature of Solution Every 20 Seconds (SAMPLE ANSWER BELOW)

Time after mixing (min:sec) Temperature (°C) Initial 35.2 0:20 34.3 0:40 34.0 1:00 33.8 1:20 33.6 1:40 33.4 2:00 33.2 2:20 33.2 2:40 33.1 3:00 33.0 3:20 32.8 3:40 32.8 4:00 32.8 4:20 32.6

4:40	32.5
5:00	32.4

Graph 3: Reaction 3 (NH3 + HCI) (SAMPLE ANSWER BELOW)

 $\begin{array}{l} \textbf{Photo 1: Reaction 1: NaOH + HCl Calculations} \\ \textbf{(SAMPLE ANSWER BELOW)} \end{array}$

$$NaOH(aq) + HCI(aq) \longrightarrow H2O(I) + NaCI(aq)$$

$$2M = \frac{2 \text{ moles}}{1 \text{ Liter}} \times \frac{1 \text{ Liter}}{1000 \text{ mL}} \times 10 \text{ mL} = 0.02 \text{ moles}$$

Density =
$$\frac{1.02 \text{ g}}{1 \text{ pm}} \times 20 \text{ mL} = 20.4 \text{ g} = \text{total mass}$$

qrxn = $(20.4 \text{ g}) \times (4.184 \text{ J/g} \text{ C}) \times (-13.4 \text{ C}) = -1143.74 \text{ J} = -1.14 \text{ kJ}$
 $\triangle H = -1.14 \text{ kJ/0.02 mol} = -57 \text{ kJ/mol}$

Photo 2: Reaction 2: NaOH + NH4Cl Calculations (SAMPLE ANSWER BELOW)

$$NaOH(aq) + NHqCl(aq) \rightarrow NH3(g) + NaCl(aq) + H2O(l)$$

$$2M = \frac{2 \text{ moles}}{1 \text{ Liter}} \times \frac{1 \text{ Liter}}{1000 \text{ mL}} \times 10 \text{ mL} = 0.02 \text{ moles}$$

Density =
$$\frac{1.02 \text{ g}}{1 \text{ m}} \times 20 \text{ mL} = 20.4 \text{ g} = \text{total mass}$$

$$qrxn = (20.4 \text{ g}) \times (4.184 \text{ J} / \text{g}^{\bullet}\text{C}) \times (-0.7^{\bullet}\text{C}) = -59.74 \text{J} = -0.060 \text{ kJ}$$

Photo 3: Reaction 3: NH3 + HCl Calculations (SAMPLE ANSWER BELOW)

$$NH3(aq) + HCl(aq) \longrightarrow NH4 Cl(aq)$$

$$2 M = \frac{2 \text{ moles}}{1 \text{ Litter}} \times \frac{1 \text{ Litter}}{1000 \text{ mL}} \times 10 \text{ mL} = 0.02 \text{ moles}$$

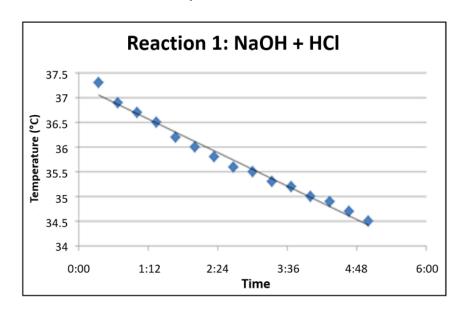
Density =
$$\frac{1.02 \text{ g}}{1 \text{ m/c}}$$
 x 20 m/c = 20.4 g = total mass

$$qrxn = (20.4 g) x (4.184 J/g^{\circ}C) x (-10.25^{\circ}C) = -874.9 J = -0.875 kJ$$

$$\Delta H = -0.875 \text{ kJ} / 0.02 \text{ mol} = -43.75 \text{ kJ} / \text{mol}$$

In an endothermic reaction _____. heat is released and temperature increases heat is released and temperature decreases heat is absorbed and temperature decreases heat is absorbed and temperature increases A chemical reaction that releases heat to the surrounding environment is considered _____. endothermic endothermic exothermic The amount of heat given off or absorbed by a chemical reaction is called _____. an exothermic reaction the change in enthalpy a Joule the product of pressure and volume

Enthalpy is denoted by the symbol.	
□ н	•
○ J	
○ ΔΕ	
○ F	
The change in enthalpy of a reaction is equal to the enthalpy of the	of the
o products; reactants	~
reactants; products	
None of the above	
When an reaction occurs the products have a greater ent the reactants, whereas during an reaction the enthalpy of is less than the enthalpy of the reactants. © exothermic; endothermic	
 endothermic; exothermic 	~
Hess's Law indicates that if a reaction takes place in one or mo the change in enthalpy for the overall process must be the sur change in enthalpy of the constituent reactions.	
○ True	✓
False	
Calculate the percent error of a chemical reaction with a theor of -45.68 kJ/mol and an experimental value of -54.78 kJ/mol.	etical value
© 20.10%	
0 16.61%	
O 19.92%	✓
© 21.37%	


What is the \triangle H of a reaction where the mass of the solution is 18.7 g at a specific heat of 5.008 J/g°C and the system experiences a change in temperature of 7.2°C?

674.27 J
-674.27 J
-67.42 J
67.42 J

If an experiment has a q_{rxn} of 518.07 J, calculate the change in enthalpy of the reaction if there were 0.04 mol of product in the solution.

12.95 kJ/mol
 -12951.75 kJ/mol
 -12.95 kJ/mol
 7.72 kJ/mol

In an experiment, NaOH and HCl are mixed. Based on the graph, what is the change in temperature of the mixture if the initial temperature of the NaOH was 23.0°C and the initial temperature of the HCl was 25.2°C?

○ 1.3°C

○ 12.7°C

○ 13.2°C

○ 10.4°C

Extension Questions

Worldwide, scientists are working on different options for clean energy to replace the burning of fossil fuels. One option that could potentially be successful is the use of hydrogen gas. This gas can be generated through a reaction between carbon and water.

$$C(s) + 2H_2O(g) \longrightarrow CO_2(g) + 2H_2(g) \Delta H = ?$$

1)
$$CO_2(g) \longrightarrow C(s) + O_2(g) \Delta H = 393.5 \text{ KJ}$$

2)
$$2H_2O(g) \longrightarrow 2H_2(g) + O_2(g) \Delta H = 483.6 \text{ KJ}$$

Based on what you have learned in this lab, use the chemical equation and Hess's law to determine the heat of formation and if this reaction is exothermic or endothermic.

(SAMPLE ANSWER BELOW)

Equation 1 must be changed to C(s) + O2(g) --> CO2(g) H1 = -393.5 KJ

Equation 2 is in the correct order.

2H2O --> 2H2(g) + O2(g) H2 = 483.6 KJ

Adding the two equations together cancels out the oxygen in equation 1 and 2 to give the desired reaction equation.

H1 + H2 = -393.5 KJ + 483.6 KJ = 90.1 KJ

This means the heat of formation for this reaction gives a positive enthalpy, which makes this reaction endothermic.

