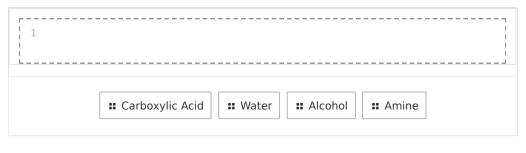
SI GOB - Full Discipline Demo

GOB-Synthesis of Fragrant Esters

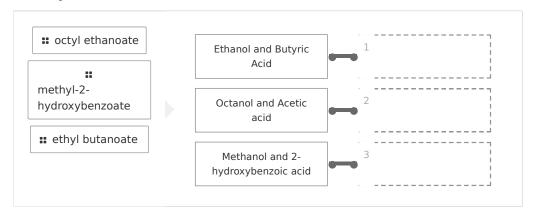

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI GOB - Full Discipline DemoCourseSI GOB - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

An ester is formed from which two functional groups?



Correct answers:

1 Carboxylic Acid Alcohol

Match the IUPAC nomenclature for each ester with the correct alcohol and carboxylic acid combination.

Correct answers:

1 ethyl butanoate 2 octyl ethanoate 3 methyl-2-hydroxybenzoate

Classify the following compounds as either soluble or insoluble in water.

Water Soluble			Water Insoluble	
1		2		
	: Acetic Acid	# Ethanol	# Ethyl Acetate	

Correct answers:

1 Acetic Acid Ethanol 2 Ethyl Acetate

Exploration

Ethyl acetate has how many hydrogen bond donors?	
○ 0	~
0 1	
◎ 2	
3	
An ester is more polar than a carboxylic acid.	
○ True	
False	~
Esterification is a chemical reaction between a carboxylic acid molecule an alcohol molecule and it forms an ester and water.	and
○ True	~
• False	
The IUPAC nomenclature of ethyl butanoate is derived from ethanol and butanoic acid.	
○ True	✓
False	

Exercise 1

Data Table 1: IUPAC Nomenclature of Esters (SAMPLE ANSWER BELOW)

(SAPILLE ANSWER BELOW)				
	IUPAC of Alcohol	IUPAC of Carboxylic acid	IUPAC of Ester	
Ester 1	Ethanol	Hexanoic Acid	ethyl hexanoate	
Ester 2	Methanol	Benzoic Acid	methyl benzoate	
Ester 3	Butanol	Butanoic Acid	butyl butanoate	
Ester 4	Hexanol	Ethanoic Acid	Hexyl ethanoate	
Ester 5	Pentanol	Butanoic Acid	pentyl butanoate	

Exercise 2

What role does sulfuric acid play in the production of the esters in this experiment?				
Sulfuric acids play the role of the catalyst in the production of es	ters.			
The active aromatic ester in oranges is octyl ethanoate. Is th between the naturally-produced ester in oranges and the est				
The esters made in this experiment are not pure, but they could in a teaching experiment should never be tasted. That being sai ethanoate and in the experiment we made octyl ethanoate, so st	d, oranges do contain octyl			
Given that ethanol and propanoic acid are soluble in water, we chemicals reacted soluble in water, based on your experiment describing the property that would makes it soluble. If no, expand what property makes the ester insoluble.	tal results? If yes, explain why,			
The ester that would form from ethanol and propanoic acid is eth has 5 carbons and no hydrogen bond donors. That ester will not the lack of hydrogen bond donors.				
Perfumes are often made up of a mixture of different esters. would good chemicals to use in perfumes.	Name two reasons that esters			
Esters make good compounds for perfumes because				
ESTATE THAT TO THE TOTAL PROTOCOLOGY OF THE TO				

- 1) They have a low boiling points, making them volatile
- 2) Most esters have a pleasant aroma, including fruit, mint and flowers.

Data Table 2: IUPAC Nomenclature, Aromas and Solubilities of Synthesized Esters (SAMPLE ANSWER BELOW)

(SATING LET MOWER BELOW)				
Alcohol	Carboxylic Acid	IUPAC Ester Name	Aroma	Solubility of ester in water
n-Butanol	Acetic Acid	Butyl ethanoate	Apple	Insoluble
1-Octanol	Acetic Acid	Octyl ethanoate	Orange	Insoluble
Isoamyl alcohol	Acetic Acid	3-methylbutyl ethanoate	Banana	Insoluble
Isobutyl alcohol	Acetic Acid	2-methylpropyl ethanoate	Cherry	Insoluble
denatured Ethanol	Propanoic Acid	ethyl propanoate	Pineapple	Insoluble
Methanol	Salicylic Acid	methyl 2- hydroxybenzoate	Mint	Insoluble

Competency Review

Esters are organic compounds formed by the reaction between	
carboxylic acids and alcohols	~
 alcohols and amines 	
 carboxylic acids and water 	
 amines and carboxylic acids 	
Esters will have a lower boiling point then carboxylic acids with the sammolecular formula. True False	ne ✓

pentanoic acid?	
opentyl ethanoate	
ethyl pentanoate	✓
ethyl ethanoate	
opentyl pentanoate	
Esters are soluble in water.	
True	
○ False	✓
The aroma of esters is associated with	
Fruit	
Mint	
Flowers	
All of the above	✓
The ester methyl hexanoate could be made by the esterification reaction between and	1
methanol; benzoic acid	
ethanol; hexanoic acid	
methanol; hexanoic acid	~
opropanol; butanoic acid	

What is the correct IUPAC name for the ester that forms from ethanol and

For the ester pictured below, the alcohol's IUPAC name component is ____ and the carboxylic acid's IUPAC name component is ____.

- methyl; propanoate
- methyl; butanoate
 - butyl; methanoate
 - propyl; ethanoate

Extension Questions

Waxes are esters that are synthesized by plants and animals. These esters are made from fatty acids (a carboxylic acid made up of 10 or more carbons) and alcohols with alkyl chains of eight or more carbons.

- a) Do you hypothesize that waxes are soluble or insoluble in water?
- b) What property determines a wax's solubility in water?
- c) Triacontanyl palmitate is one of the main components of beeswax. Based on the melting point of beeswax, is it a solid or liquid at room temperature (23.0°C)? (SAMPLE ANSWER BELOW)
- A) Waxes are insoluble in water.
- B) The long hydrophobic carbon chains make them insoluble as well as the lack of hydrogen bond donors.
- C) Beewax has a melting point of 62 to 64 °C, which is higher than room temperature, and would therefore be a solid at room temperature.