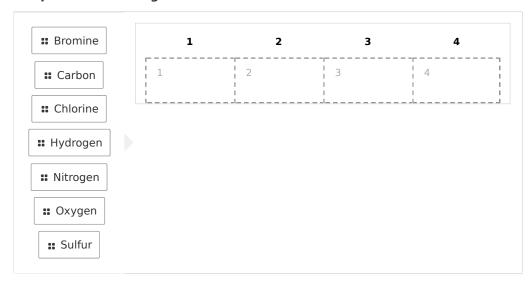
SI Chemistry - Full Discipline Demo

Functional Groups in Organic Chemistry

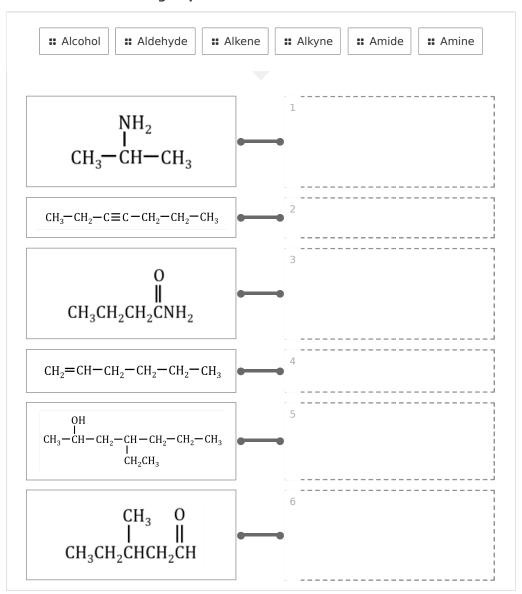

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

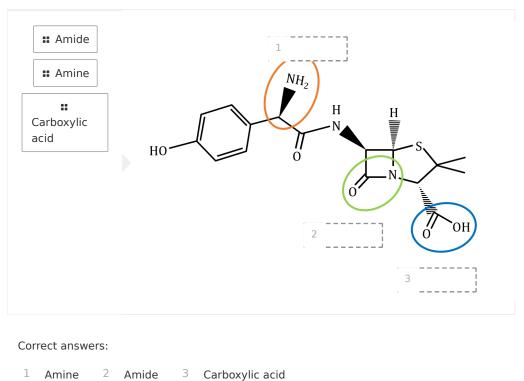
Categorize each element by the number of potential bonds formed in compounds according to the octet rule.



Correct answers:

1 Bromine Chlorine Hydrogen 2 Oxygen Sulfur

³ Nitrogen ⁴ Carbon


Match each functional group with the correct structure.

Correct answers:

- $1 \quad \mathsf{Amine} \quad 2 \quad \mathsf{Alkyne} \quad 3 \quad \mathsf{Amide} \quad 4 \quad \mathsf{Alkene} \quad 5 \quad \mathsf{Alcohol}$
- 6 Aldehyde

Label the circled sections of the image with the correct functional group.

Exploration

Hydrocarbons are the simplest organic compounds, named based on the number of carbon atoms in the longest chain.

○ True			~
False			

An organic compound with seven carbons in the longest continuous chain has the prefix ____.

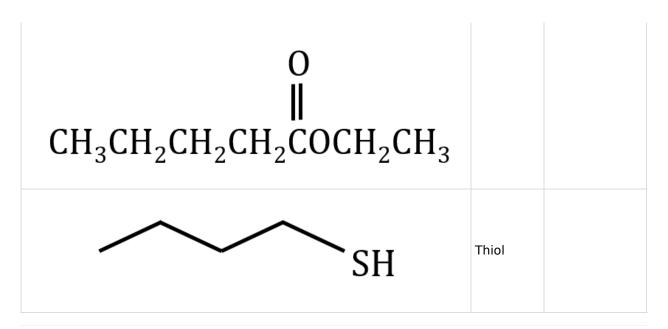
	hex-				
	hept-				•
	oct-				
	but-				

	_ include a carbon-oxygen-carbon linkage.	
	Alcohols	
0	Ethers	✓
C	Amines	
	Thiols	
Car	boxylic acids combine a(n)	
0	carbonyl and a hydroxyl group	~
0	ketone	
	aldehyde and a hydroxyl group	
	carbonyl and a thiol	
	contain a carbonyl group with a carbon-nitrogen bond. Esters Amides Amines Aldehydes	~
	ones are named with the suffix -oic acid -al	
	-ol	
	-one	~

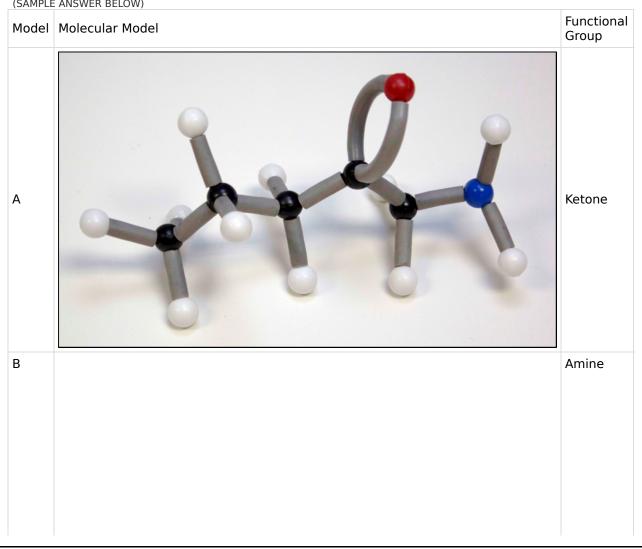
Based on the priority of functional groups in naming organic compounds,
is given priority over
amide; amine
ketone; amide
thiol; ketone
ether; ester
Exercise 1
Compare and contrast the following pairs of functional groups:
a. Alcohols and ethers
b. Aldehydes and ketones
c. Amines and amides
d. Carboxylic acids and alcohols
e. Amides and esters
f. Ethers and esters
a) Alcohol and ethers – Both contain C-O bonds. Alcohols contain a C-O-H group while ethers contain a C-O-C group.
b) Aldehydes and ketones – Both contain carbonyl groups, >C=O, but differ in the location. If the carbonyl carbon is at the end of a chain of carbon atoms and bonded to an H as well, then it is an aldehyde. If the carbonyl carbon is bonded to two other carbon atoms, then it is a ketone.

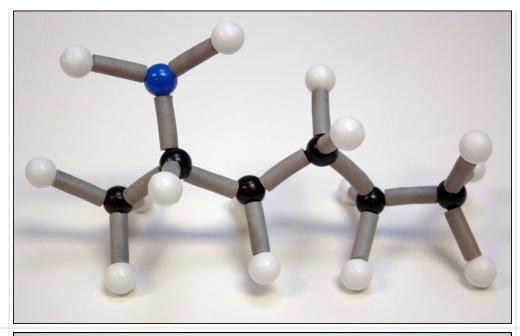
- a) Alcoh group.
- b) Alder carbon carbony
- d) Carboxylic acids and alcohols Both contain C-OH bonds but the C is also part of a carbonyl group in carboxylic acids.
- e) Amides and esters Both contain carbonyl groups, with the carbonyl carbon bonded to something other than C or H. In amides, the carbonyl carbon is bonded to N while in esters, the carbonyl carbon is bonded to an O-C
- f) Ethers and esters Both contain C-O-C groups. In esters, one of the Cs in the group is a carbonyl carbon.

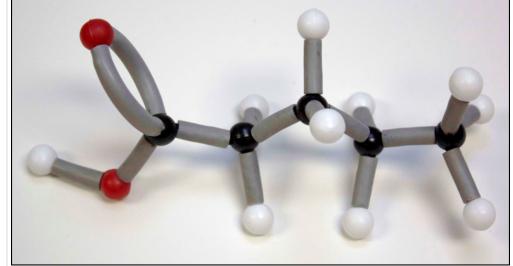
Compare the structure and listed name for each compound shown in Table 5. Record "Yes" if the structure is accurately named, or record the correct name if the structure is incorrectly named in Table 5.


Table 5. Identifying the Correct Name of Compounds

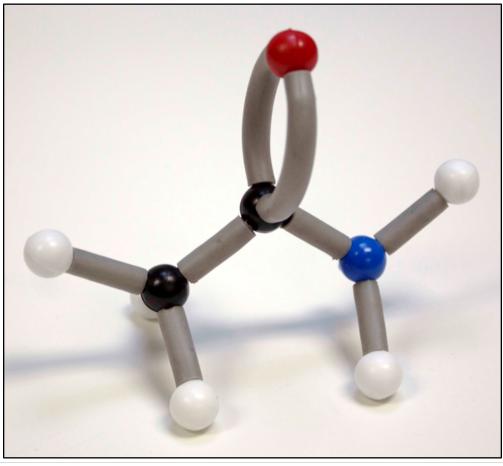
Number	Structure	Name
1	CH ₃ -CH ₂ -CH ₂ -CH ₂ -C-OH	Pentanoic acid
2	OH	2-propanal
3	$\begin{array}{c} O & H \\ H_3C-C-\frac{C}{C}-CH_2-CH_2-CH_2-CH_2-CH_3 \\ CH_3 \end{array}$	2-methyl-3-octanone
4	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH	1-butanol
5	• • • • • • • • • • • • • • • • • • •	hexanone
6	NH ₂ H ₃ C-C-CH ₂ ·CH ₃ H	1-propanamide

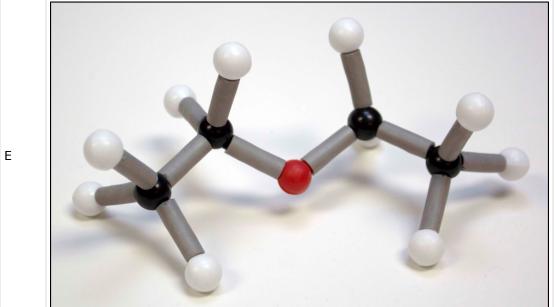

- 1. Yes
- 2. 2-propanol
- 3. 3-methyl-2-octanone
- 4. Yes
- 5. 2-heptanone
- 6. 2-butanamine


Data Table 1: Naming Functional Groups and Compound Names Based on Structure (SAMPLE ANSWER BELOW)


(SAMPLE ANSWER BELOW) Structure	Functional Group	Compound Name
$CH_2 = CH - CH_2 - CH_2 - CH_3$	Alkene	1-pentene
○ OH O	Carboxylic acid	Hexanoic acid
O CH ₃ CH ₂ CONH ₂	Amide	Butanamide
	Ketone	Cyclohexanone
$CH_2-CH_2-C\equiv C-CH_2-CH_2-CH_3$	Alkyne	3-heptyne
$\stackrel{NH_2}{\longleftarrow}$	Amine	2-butanamine
	Ester	

Data Table 2: Naming Functional Groups Based on Molecular Models (SAMPLE ANSWER BELOW)

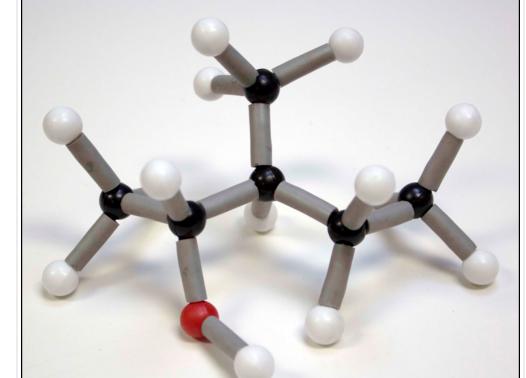




Carboxylic acid

D Amide


С



Ether

F Aldehyde

Alcohol

H Ester

G

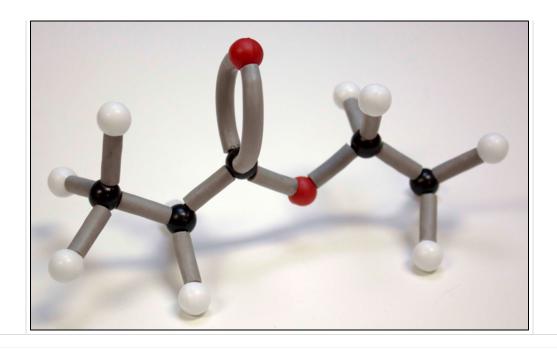


Photo 1: Model A – Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3 - CH_2 - CH_2 - CH_2 - C - CH_3$$

Photo 2: Model B – Structural Formula (SAMPLE ANSWER BELOW)

$$\begin{matrix} \mathrm{NH_2} \\ \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3} \end{matrix}$$

Photo 3: Model C – Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3-CH_2-CH_2-CH_2-C-OH$$

Photo 4: Model D - Structural Formula (SAMPLE ANSWER BELOW)

Photo 5: Model E – Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3 - CH_2 - O - CH_2 - CH_3$$

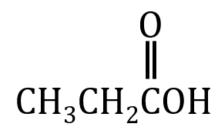
Photo 6: Model F – Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3$$
 $-CH_2$ $-CH_2$ $-CH_2$ $-CH_1$ 0

Photo 7: Model G - Structural Formula (SAMPLE ANSWER BELOW)

Photo 8: Model H - Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3 - CH_2 - C - O - CH_2 - CH_3$$


Data Table 3: Naming Functional Groups Based on the IUPAC Name (SAMPLE ANSWER BELOW)

Name	Functional Group
Propanoic acid	Carboxylic acid

3-methylpentanal	Aldehyde
2,3-dimethyl-1-hexene	Alkene
2-propanamine	Amine
Ethanamide	Amide
4-ethyl-2-heptanol	Alcohol
3-methyl-2-octanone	Ketone
1,2-dichloroethylpropanoate	Ester

Photo 9: Propanoic Acid - Structural Formula (SAMPLE ANSWER BELOW)

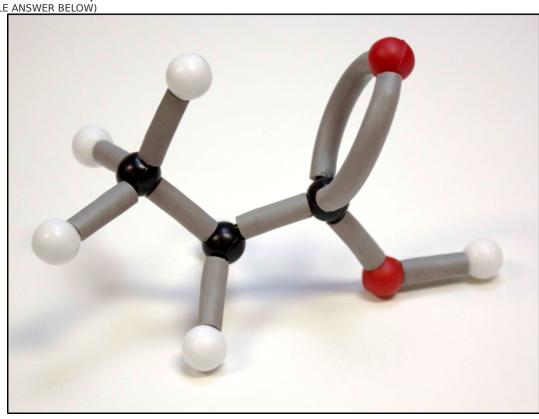


Photo 10: Propanoic Acid - Molecular Model (SAMPLE ANSWER BELOW)

Photo 11: 3-methylpentanal – Structural Formula (SAMPLE ANSWER BELOW)

$$\begin{array}{ccc} & \text{CH}_3 & \text{O} \\ & & \parallel \\ \text{CH}_3\text{CH}_2\text{CHCH}_2\text{CH} \end{array}$$

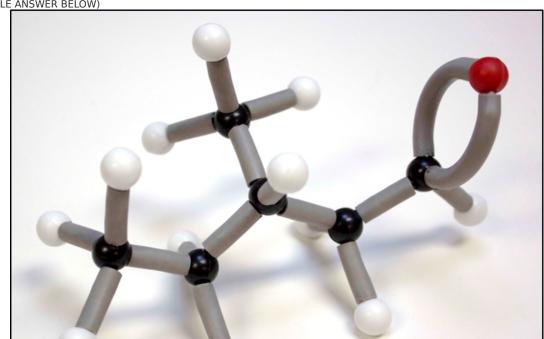


Photo 12: 3-methylpentanal – Molecular Model (SAMPLE ANSWER BELOW)

Photo 13: 2,3-dimethyl-1-pentene – Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3$$

$$CH_2 = C - CH - CH_2 - CH_3$$

$$CH_3$$

Photo 14: 2,3-dimethyl-1-hexene – Molecular Model (SAMPLE ANSWER BELOW)

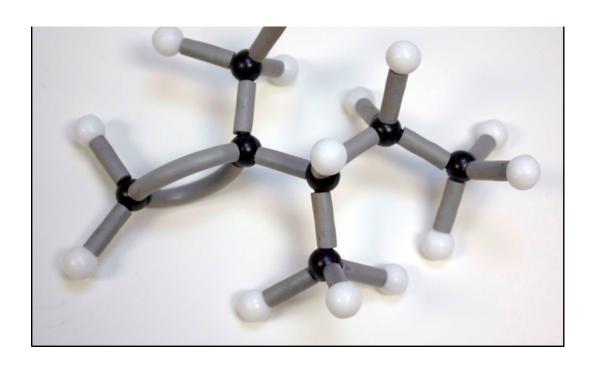
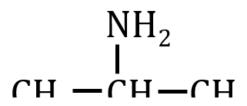



Photo 15: 2-propanamine – Structural Formula (SAMPLE ANSWER BELOW)

G113 G11 G113

Photo 16: 2-propanamine – Molecular Model (SAMPLE ANSWER BELOW)

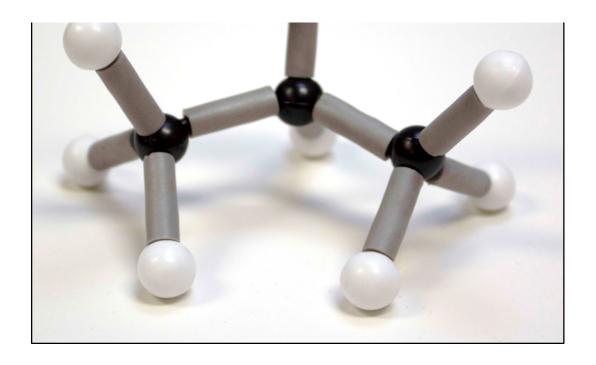


Photo 17: Ethanamide – Structural Formula (SAMPLE ANSWER BELOW)

CH₃CONH₂

Photo 18: Ethanamide – Molecular Model (SAMPLE ANSWER BELOW)

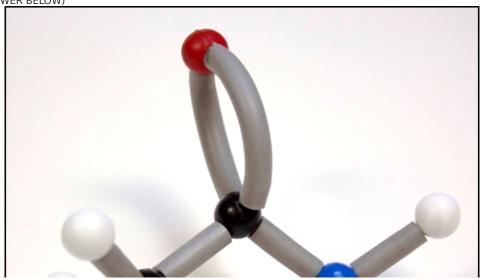


Photo 19: 4-ethyl-2-heptanol – Structural Formula (SAMPLE ANSWER BELOW)

$$\begin{array}{c} \text{OH} \\ \text{CH}_{3} - \text{CH} - \text{CH}_{2} - \text{CH} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{2} - \text{CH}_{3} \end{array}$$

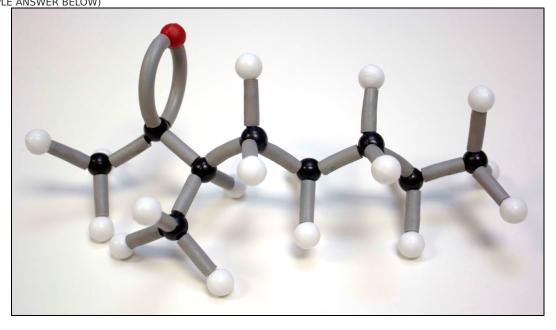

Photo 20: 4-ethyl-2-heptanol – Molecular Model (SAMPLE ANSWER BELOW)

Photo 21: 3-methyl-2-octanone – Structural Formula (SAMPLE ANSWER BELOW)

$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_{3} - \text{C} - \text{CH} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

Photo 22: 3-methyl-2-octanone – Molecular Model (SAMPLE ANSWER BELOW)

Competency Review

alkyne	
amine	
alkane	
alkene	
aldehyde	
	group containing a carbonyl group and a
nitrogen atom.	group containing a carbonyl group and a
amine	group containing a carbonyl group and a
nitrogen atom.	group containing a carbonyl group and a
amineester	

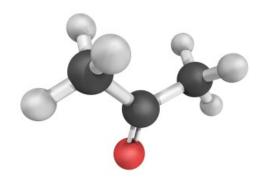
The functional group containing an oxygen atom bonded between two R groups is known as a(n)	
○ ester	
carboxylic acid	
○ ether	~
○ ketone	
 aldehyde 	
A(n) is the functional group with a carbonyl group at the end of a carbon chain.	
○ ketone	
carboxylic acid	
○ ester	
ether	
○ aldehyde	~
The functional group consisting of a carbonyl group bonded to a hydroxyl group is known as a(n)	
ester	
ketone	
amide	
○ carboxylic acid	~
• ether	

The possible name of a compound containing the functional group in the image below is ____.

- hexanamide
- ethanal
 - methanol
 - 3-pentanone
 - propanoic acid
 - methylbutanoate

The possible name of a compound containing the functional group in the image below is ____.

$$\begin{matrix} & O \\ || \\ R_1 - C - OR_2 \end{matrix}$$

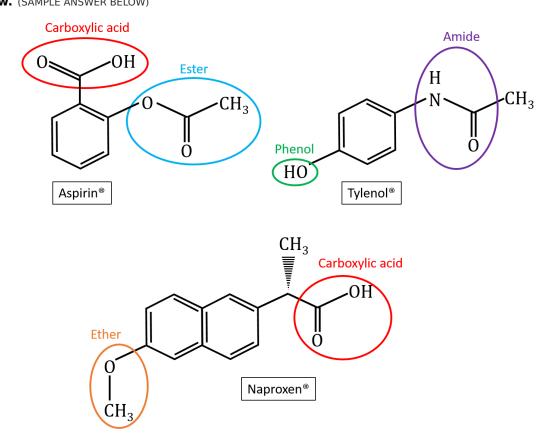

- propanoic acid
- 3-pentanone
- ethanal
- hexanamide
- methanol
- methylbutanoate

The name of the compound in the image below is ____.

$$\overset{\mathrm{NH_2}}{\overset{\mathrm{I}}{\mathsf{CH_3}}} \overset{\mathrm{CH_2}}{-\overset{\mathrm{CH_2}}{-}} \overset{\mathrm{CH_2}}{\mathsf{CH_2}} \overset{\mathrm{CH_3}}{-\overset{\mathrm{CH_3}}{-}} \overset{\mathrm{CH_3}}{-\overset{\mathrm{CH_3}}{-$$

- pentanoic acid
- butanamide
- pentanal
- 2-pentanamine

The molecular model shown below has a(n) $___$ functional group.


- amine
- ester
- ketone
- aldehyde

The compound 1,2-dibromoethylheptanoate has a(n) ____ functional group.

- aldehyde
- ketone
- ester
- carboxylic acid

Extension Questions

Use the internet to research the functional groups of aspirin, tylenol, and naproxen. Draw the structure of each compound on a sheet of paper, including your name and the date. Circle the functional groups on each compound and label them. Take a photo of the completed drawings and upload the image into the photo panel below. (SAMPLE ANSWER BELOW)

