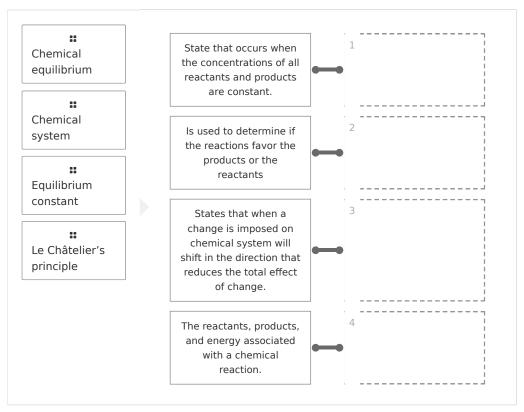
SI Chemistry - Full Discipline Demo

Equilibrium and Le Châtelier's Principle

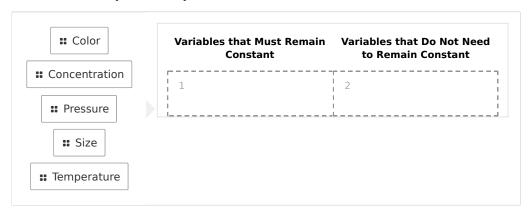

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

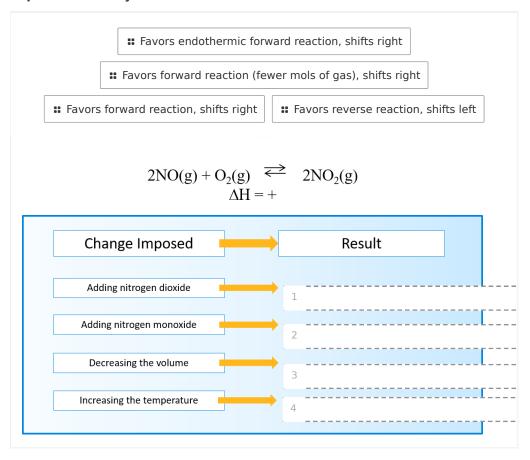
Match each term with the best description.



Correct answers:

- 1 Chemical equilibrium 2 Equilibrium constant 3 Le Châtelier's principle
- 4 Chemical system

Identify the variables that must remain constant to maintain an equilibrium constant and equilibrium position.



Correct answers:

1 Concentration Pressure Temperature 2 Size Color

Review the chemical equation below and identify the result that a change imposed on the system would have.

Correct answers:

- 1 Favors reverse reaction, shifts left 2 Favors forward reaction, shifts right
- 3 Favors forward reaction (fewer mols of gas), shifts right
- 4 Favors endothermic forward reaction, shifts right

Exploration

The state of chemical equilibrium occurs when the concentrations of _____.

- all reactants and all products remain constant
- products is less than the concentration of reactants
- reactants is greater than the concentrations of products

O lowest possible value	•
-	eater than 1, we say that the reaction of K is less than 1, the reaction favors the
o products; reactants	•
reactants; products	
Neither reactants nor products are	e favored.
The equilibrium position of a rea	action requires the variables of,,
ocolor, pressure, concentration	
oconcentration, time, temperature	
pressure, temperature, concentra	tion 🗸
time, color, temperature	
	s the idea that a change imposed on a system to find a new chemical equilibrium highest possible value.
O True	
O False	•
If the ratio of products over readwill shift to the left, meaning th	ctants has increased, the chemical system at
○ Q is equal to K	
Q is greater than K	√

T1		and a decided			
ine reaction	quotient is	caiculated	using init	ial concentration	ıs.

O True		•
False		

Exercise 1

Use your results to determine if the forward reaction in the potassium chromate/HCl reaction endothermic or exothermic. Explain your answer, using the table below to help construct your thoughts.

Type of Change	Chemical System Shift (Right shifts toward product. Left Shifts toward reactant.)
Increase concentration of reactant OR Decrease concentration of product	Right
Decrease concentration of reactant OR Increase concentration of product	Left
Increase temperature of an exothermic reaction	Left
Increase temperature of an endothermic reaction	Right
Decrease temperature of an exothermic reaction	Right
Decrease temperature of an endothermic reaction	Left
Decrease pressure (gases only)	Toward the side with more gas molecules
Increase pressure (gases only)	Toward the side with less gas molecules

The data collected and observations made in Data Table 2 suggest that the chromate/HCl reaction is endothermic. As heat is added to the reaction the chemical system shifts to the right (orange) and as heat is removed from the reaction (placing it in cold water bath) the chemical system shifts to the left (forming yellow chromate).

$$2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + H_2O(1)$$

Write the equation for the equilibrium constant (K) of the reaction studied in this exercise.

$$K = ([Cr_2O_7^{2-}]) / [CrO_4^{2-}]^2 [H^+]^2$$

Consider the chemical reaction: $N_2 + 3H_2$ yields $2NH_3$. If the concentration of the reactant H_2 was increased from 1.0 x 10^{-2} M to 2.5 x 10^{-1} M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.

Use this information to answer Questions 3, 4, and 5:

The equilibrium constant (K) of the reaction below is $K = 6.0 \times 10^{-2}$, with initial concentrations as follows: $[H_2] = 1.0 \times 10^{-2} \text{ M}$, $[N_2] = 4.0 \text{ M}$, and $[NH_3] = 1.0 \times 10^{-4} \text{ M}$.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Q = ([1.0 x 10^{-4} mol/L]₀²) / ([4.0 mol/L]₀ [2.5 x 10-1 mol/L]₀³) O = 1.6 x 10^{-7}

As Q is much smaller than K, the ratio of products over reactants has decreased and the chemical system will shift to the right.

If the concentration of the reactant H_2 was decreased from 1.0 x 10^{-2} M to 2.7 x 10^{-4} M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.

$$Q = ([1.0 \times 10^{-4} \; \text{mol/L}]_0^2) \; / \; ([4.0 \; \text{mol/L}]_0 \; [2.7 \times 10^{-4} \; \text{mol/L}]_0^3)$$

$$Q = 1.27 \times 10^2$$

As Q is much larger than K, the ratio of products over reactants has increased and the chemical system will shift to the left.

If the concentration of the product NH $_3$ was increased from 1.0 x 10 $^{-4}$ M to 5.6 x 10 $^{-3}$ M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.

 $\rm Q = ([5.6 \times 10^{-3} \; mol/L]_0^2) \; / \; ([4.0 \; mol/L]_0 \; [1.0 \times 10^{-2} \; mol/L]_0^3)$

Q = 7.84

As Q is much larger than K, the ratio of products over reactants has increased and the chemical system will shift to the left.

Data Table 1: Chromate and Dichromate

(SAMPLE ANSWER BELOW)

Color of Chromate	·	Number of Drops of NaOH to Shift Equilibrium Position
Yellow	Orange	10

Data Table 2: Endothermic & Exothermic Equilibrium Position (SAMPLE ANSWER BELOW)

(SAMIFEL ANSWER BELOV	• • •		
	Reaction at Room Temperature	Reaction in Cold Water Bath	Reaction in Hot Water Bath
Color	Orange	Orange and Yellow with white precipitate	Orange
Chemical System Shift (Left or Right)		Left	Right
Explanation of why chemical system is shifted to the left or to the right		As the color includes yellow, it suggests that there is chromate present in the reaction and the chemical system has shifted to the left.	The color is orange, indicative of dichromate, suggesting that the addition of heat has shifted the chemical system to the right.

Exercise 2

From your observations and data collected in Data Table 3, describe the direction of the equilibrium position shift upon addition of NaOH.

From the observations and data collected in Data Table 3, it appears that the addition of NaOH Typesetting math: 100% of product (dark blue, ferric ferrocyanide). Thus the addition of the NaOH

Data Table 3: Ferric Ferrocyanide

(SAMPLE ANSWER BELOW)

Color of	Color of	Number of Drops of	Observations when Equilibrium is Shifted
Potassium	Ferric	NaOH to Shift	
Ferrocyanide	Ferrocyanide	Equilibrium Position	
Pale Yellow	Dark Blue	25	The dark blue ferric ferrocyanide is gone and dark orange flecks appear. the overall color is pale yellow.

Competency Review

A chemical system is in equilibri	ium when free energy exists at	
 the highest possible value 		
 the lowest possible value 	~	
equal proportions		
During a chemical reaction, if the doesn't change, the reaction has	ne concentration of reactants and products s likely stopped.	
True		
○ False	•	
To predict which direction a reac investigate the	ction will move to reach equilibrium,	
equilibrium constant		
equilibrium position		
reaction quotient	•	

increased; right		
increased; left		
decreased; left		
odecreased; rigi	yht	~
	position of a reaction requires certain environmental nain constant. These variables are	
o pressure, temp	perature, and concentration	~
temperature a	and concentration	
opressure, temp	perature, and time	
None of the ab	bove.	
_	Châtelier's Principle, an increase in the concentration of ft the chemical system to	
product will shift	ft the chemical system to	~
the right the left neither the right	ft the chemical system to	*
the right the left neither the right the left when a change system (chemic reduces the to	ght nor left	*
the right the left neither the right the left when a change system (chemic reduces the to energy exists a when a change (chemical reaction of the change)	ght nor left rinciple states that re (pressure, temperature, concentration) is imposed on a chemical nical reaction), the chemical system will shift in the direction that otal effect of change, finding a new chemical equilibrium where free	*

The chemical reaction of chromate and	dichromate is indicated by a
 change in the state of matter 	
o color change	•
temperature change	
Generally, if the value of K is greater the favors the products. This makes sense in the numerator of the equation.	
products	✓
reactants	
concentrations	
Consider the reaction $N_2(g)+3H_2(g)$	$ ightarrow \; 2{ m NH}_3({ m g})$. If the concentration of
the product $\mathrm{NH_3}$ decreased, which way	would the chemical system shift?
○ Left	
LCIC	
Right	•

Extension Questions

Assume that you are in charge of a designing a process to produce acetylene (C_2H_2) from ethane (C_2H_6), which is the reverse of the reaction shown above. Use your knowledge of equilibrium to suggest a set of conditions that would maximize the concentration of acetylene (C_2H_2) at equilibrium. Assume that it is possible to add or remove any of the three components of this system and to change the general conditions of the reaction (pressure, temperature, volume).

$$C_2H_2(g) + 2H_2(g) \rightleftharpoons C_2H_6(g)$$

$$\Delta H =$$
 -

Use your knowledge of equilibrium to suggest a set of conditions that would maximize the concentration of acetylene (C_2H_2) at equilibrium.

(SAMPLE ANSWER BELOW)

- Add ethane during the reaction to keep its concentration high
- Remove hydrogen during the reaction to keep its concentration low
- Run the reaction at a high temperature
- Run the reaction at low pressure

