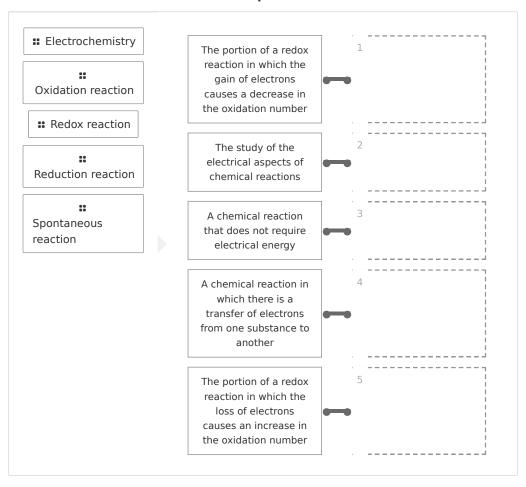
SI Chemistry - Full Discipline Demo

Electrochemical Cells and Cell Potentials

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Reduction reaction 2 Electrochemistry 3 Spontaneous reaction
- 4 Redox reaction 5 Oxidation reaction

Classify each statement as true or false.

A voltmeter measures the electric potential produced by a galvanic cell.

The cell voltage is the difference in electric potential between the cathode and the anode.

The standard reduction potentials of half-reactions are variables.

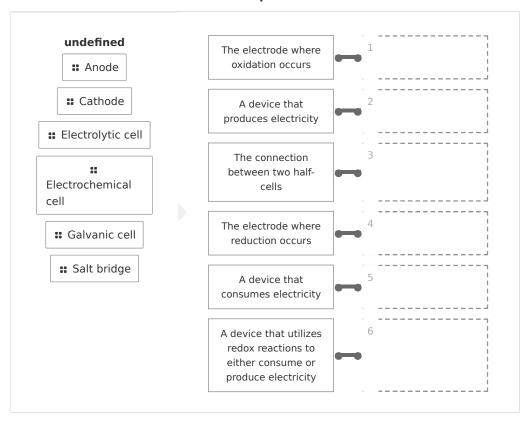
The total current to pass through a cell is called the standard reduction potential.

False

Correct answers:

1 A voltmeter measures the electric potential produced by a galvanic cell.

The cell voltage is the difference in electric potential between the cathode and the anode.


2

The total current to pass through a cell is called the standard reduction potential.

The standard reduction potentials of half-reactions are variables.

Match each term with the best description.

Correct answers:

- 1 Anode 2 Galvanic cell 3 Salt bridge 4 Cathode
- ⁵ Electrolytic cell ⁶ Electrochemical cell

Exploration

In a reduction half-reaction the gain of electrons causes a(n) ____ in the oxidation number.

increase

decrease

The electrode where oxidation occurs is called the, and the electrode where reduction occurs is called the		
	o cathode; anode	
	anode; cathode	✓
	oxidation; reduction	
	A salt bridge contains a(n) electrolyte solution.	
	inert	~
	slippery	
	reactive	
	oxidizing	
	In a galvanic cell, the E _{cell} must be for a spontaneous reaction to occur.	
	negative	
	opositive	~
	neutral	
Exerc	ise 1	
	ere the concentrations of the solutions (zinc solution, copper solution, and? Were the concentrations consistent with those of standard state conditioswer.	
	ncentration of the zinc sulfate, the copper sulfate, and the potassium chloride are s the concentration consistent with those of the standard state conditions.	e all 1M,

Was the electric potential found for your galvanic cell consistent with the standard cell potential of the reaction (as calculated in Data Table 3)? Hypothesize why it was or was not consistent.	
	The electric potential found for my galvanic cell was exactly what was expected. Both values were 1.10 Volts. I hypothesize that it was consistent because the redox reaction occurred under standard state conditions. Or: The electric potential found for my galvanic cell was less than what was expected. My value was 1.07 Volts while the expected value was 1.10 Volts. I hypothesize that it was inconsistent because the redox reaction occurred under non-standard state conditions (the temperature was higher/lower than 25 °C).
	Was there evidence of electron transfer from the anode to the cathode? Use your data in Data Table 2 to explain your answer.
	Yes, there was evidence of electron transfer as the electric potential as recorded by the multimeter dropped from 1.10 volts to 1.06 volts over the 2.5 hour time period. Additionally, electron transfer was observed by the presence of a "black" deposit of Cu atoms on the surface of the copper strip.

For the following redox reaction in a galvanic cell, write the oxidation half-reaction and the reduction-half reaction, and calculate the standard cell potential of the reaction. Use Table 1 from the background as needed. Explain how you identified which substance was oxidized and which was reduced. Show all of your work.

Redox reaction:
$$Cu(s) + 2 Fe^{3+}(aq) \rightarrow Cu^{2+}(aq) + 2 Fe^{2+}(aq)$$

Table 1. Standard reduction potentials.

Half-Reaction	E°(Volts)
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Br_2(I) + 2e^- \rightarrow 2Br^-(aq)$	+1.07
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0.00
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$AI^{3+}(aq) + 3e^{-} \rightarrow AI(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.37
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$K^+(aq) + e^- \rightarrow K(s)$	-2.93

The standard reduction potential for the copper was more negative than for the iron, thus the copper is the reducing agent and the iron the oxidizing agent. Another view is: The copper increased in charge while the iron went down in charge, so the copper was oxidized and the iron was reduced. Redox reaction: $Cu(s) + 2Fe^{3+}(aq) \rightarrow Cu^{2+}(aq) + 2Fe^{2+}(aq)$

Oxidation half-reaction: $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}(E^{\circ} = +0.34)$

Reduction half-reaction: $2Fe^{3+}(ag)+2e^{-} \rightarrow 2Fe^{2+}(ag)$ ($E^{\circ}=+0.77$)

 $E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{ox}$

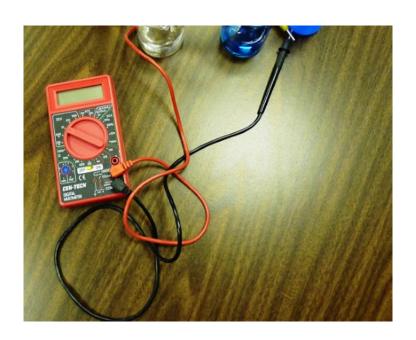
 $E^{\circ}_{cell} = (0.77) + (-0.34) = +0.43 \text{ Volts}$

Data Table 1: Spontaneous Reaction Observations

Metal in Solution:	Observations
Zinc in Copper (II) Sulfate Solution	The zinc is oxidized, as noted by the "rusting" appearance that immediately appears on the zinc. This is the copper metal from the solution, depositing itself onto the solid zinc. This reaction is the spontaneous reaction.
Copper in Zinc Sulfate Solution	The copper metal looks the same as it did before being inserted into the zinc sulfate solution. This reaction is not the spontaneous reaction.

Data Table 2: Multimeter Readings (SAMPLE ANSWER BELOW)

Time (minutes)	Multimeter Reading (Volts)
0	1.10
15	1.10
30	1.10
45	1.10
60	1.10
75	1.10
90	1.10
105	1.08
120	1.06
135	1.06
150	1.06


Data Table 3: Standard Cell Potential (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)	Equation	E°(Volts)
Oxidation Half-Reaction	$Zn(s) ightarrow Zn^{2+}(aq)+2e^{-}$	+0.76
Reduction Half-Reaction	$Cu^{2+}(aq)+2^{e-} o Cu(s)$	+0.34
Redox Reaction	$Zn(s)+Cu^{2+}(aq) ightarrow Zn^{2+}(aq)+Cu(s)$	+1.10

Photo 1: Galvanic Cell Set-up (SAMPLE ANSWER BELOW)

Competency Review

Electrochemistry is the study of chemical reactions that _____.

- generate electrical current
- use electrical current
- generate and use electrical current

A redox reaction occurs when electrons are transferred from one substarto another.	ıce
○ True	~
• False	
In a(n) half-reaction, the loss of electrons causes an increase in the oxidation number.	
oxidation	~
reduction	
A galvanic cell produces electrical energy from a spontaneous redox reaction.	
○ True	~
I	
A(n) is the connection between two half-cells.	
cathode	
salt bridge	✓
electrolytic cell	
anode	
The voltage generated by a cell at standard state conditions is called the standard cell potential.	
○ True	✓
False	

	nd strips, voltmeter, and filter paper soaked in pot hat material serves as the salt bridge?	tassium
○ filter pap	per soaked in potassium chloride	~
o zinc sulf	ate solution	
copper r	netal strip	
If a galvanion reading be?	c cell is prepared correctly, what would the initial?	multimeter
Negative	е	
Neutral		
Positive		~
-		
_	experiment using a galvanic cell for a chemical rea n voltage recorded over time indicates the transfer	
potential fo reduction p	experiment using a galvanic cell, the standard reduced copper was found to be +0.34 volts and the stare totential for zinc was found to be -0.76 volts. Whice as the reducing agent in the galvanic cell?	ndard
Copper		
O Zinc		~
Both Cop	pper and Zinc	
Neither	Copper nor Zinc	

When constructing a galvanic cell using copper (II) and zinc sulfate

Extension Questions

Use the standard reduction potentials in the table to create a galvanic cell with the highest possible standard cell voltage.

Half-Reaction	E°(Volts)
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2.87
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$Br_2(I) + 2e^- \rightarrow 2Br(aq)$	+1.07
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0.00
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.66
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.37
$Ca^{2+}(\alpha q) + 2e^{-} \rightarrow Ca(s)$	-2.87
$K^+(aq) + e^- \rightarrow K(s)$	-2.93

- a. Write the oxidation half-reaction.
- b. Write the reduction half-reaction.
- c. Calculate the standard cell voltage.
- d. Write the overall cell reaction (redox reaction)

(SAMPLE ANSWER BELOW)

- a. $2K(s) \Leftrightarrow 2K^+(aq) + 2e^-$
- b. $F_2(g) + 2e^- \Leftrightarrow 2F^- (aq)$
- c. 2.87 V (-2.93 V) = 5.80 V
- d. $2K(s) + F_2(g) \Leftrightarrow 2K^+(aq) + 2F^-(aq)$