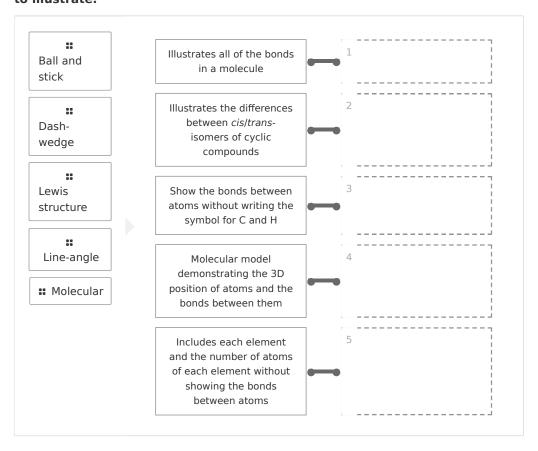
SI Chemistry - Full Discipline Demo

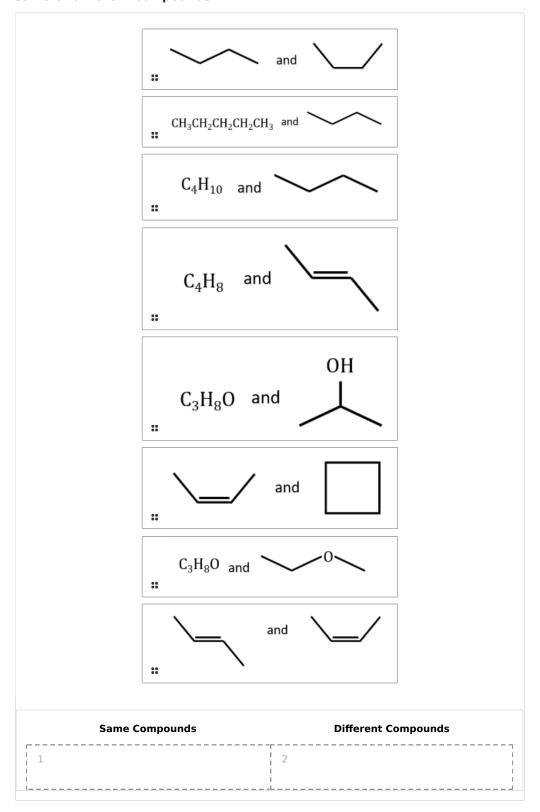
Drawing Organic Compounds

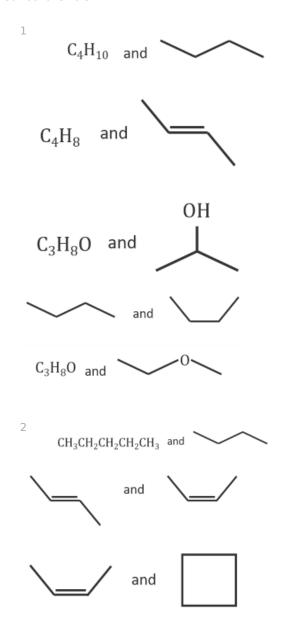
Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge


Match each type of formula with the best description of what they are used to illustrate.


Correct answers:

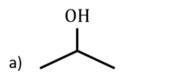
- 1 Lewis structure 2 Dash-wedge 3 Line-angle 4 Ball and stick
- 5 Molecular

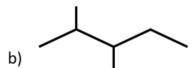
Categorize the following pairs of formulas as representing potentially the same or different compounds

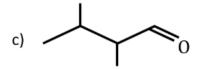
Correct answers:

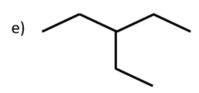
Exploration

show all bonds a	and any non-bonded valence electrons as lone pairs.	
Lewis structures		~
Line-angle formula		
 Condensed molecula 	ar formulas	
Molecular formulas		
	I formulas are the most efficient method of drawing because they do not explicitly show the symbols for	
○ True		
○ False		~
•		
	de atoms represented by spheres and bonds	
represented by rods.		
Lewis		
O Dash-wedge		
Line-angle		
Ball and stick		~
occur when com different orders.	pounds with the same formula have atoms arranged	l in
Structural isomers		~
Stereoisomers		
Lewis isomers		
 Condensed structure 	25	
Carbon atoms in cycli the ring without brea	ic compounds cannot rotate around the bonds withir aking bonds.	1
True		~
• False		


W	hen drawing structures from compound names, are given priority in						
	imbering carbons over						
	substituents; double and triple bonds						
	single bonds; substituents						
	single bonds; double and triple bonds						
	 double and triple bonds; substituents 						
Су	clohexane is an isomer of 1-hexene and 2-hexene.						
	○ True						
•	False						
	vclic alkanes have the same general formula as • hexenes						
,	hexanes						
	hexynes						
Exercise	2 1						
	ving a condensed structural formula, how do you determine how many hydrogen nclude with each carbon atom?						
double bor	on atom must make a total of four bonds, either 4 single bonds, 2 single bonds and one nd, 2 double bonds or 1 single and a triple bond. If there are fewer than 4 bonds, then atoms would be included to match the missing number of bonds						




	L-propanol
b. 2	2-methylpentane
	a) prop- means three carbon atoms, which require 2 lines between them. The "ol" ending indicates an alcohol functional group, so there would be a line between one of the carbon atoms and an oxygen atom, for a total of 3 lines. b) pent- means 5 carbon atoms that require 4 lines between them. The "methyl" indicates a branch containing one carbon atom that would be connected to the main chain by an additional line for 5 lines total.
	why showing wight upon him and formula instead of a condensed structural
	why chemists might use a line-angle formula instead of a condensed structural
lain mula	


Record the IUPAC names for each of the structures shown below in Data Table 1.

- a. 2-propanol
- b. 2,3-dimethylpentane c. 2,3-dimethylbutanal d. 1-propanol e. 3-ethylpentane

 $\begin{tabular}{ll} Photo 1: 1-propanamine - Condensed Structural Formula \\ (SAMPLE ANSWER BELOW) \end{tabular}$

CH₃CH₂CH₂NH₂

Photo 2: 1-propanamine – Line-angle Formula (SAMPLE ANSWER BELOW)

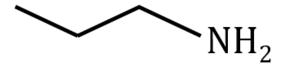


Photo 3: Optional: 1-propanamine - Molecular Model (SAMPLE ANSWER BELOW)

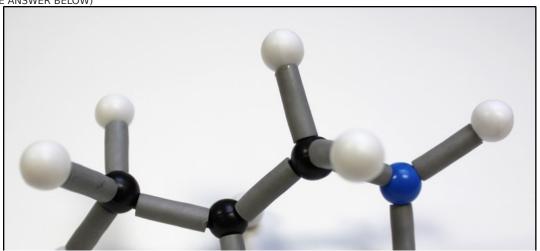


Photo 4: 2,3-dimethylheptane – Condensed Structural Formula (SAMPLE ANSWER BELOW)

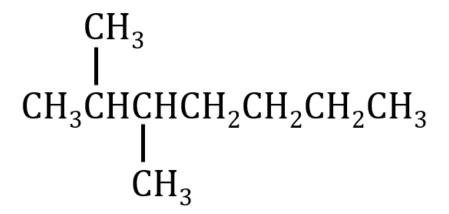


Photo 5: 2,3-dimethylheptane – Line-angle Formula (SAMPLE ANSWER BELOW)

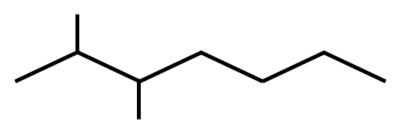


Photo 6: Optional: 2,3-dimethylheptane – Molecular Model (SAMPLE ANSWER BELOW)

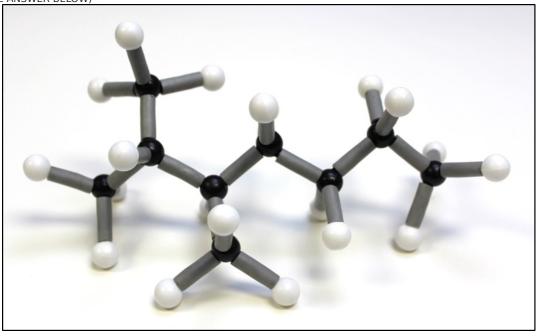


Photo 7: 3-bromo-2-pentanol – Condensed Structural Formula (SAMPLE ANSWER BELOW)

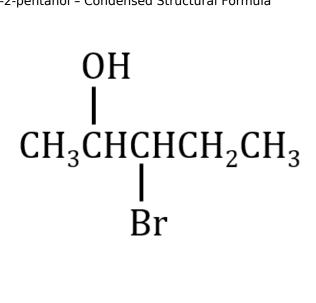


Photo 8: 3-bromo-2-pentanol – Line-angle Formula (SAMPLE ANSWER BELOW)

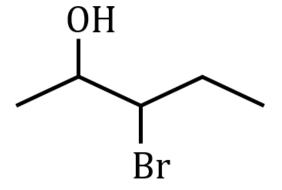


Photo 9: Optional: 3-bromo-2-pentanol - Molecular Model (SAMPLE ANSWER BELOW)

Photo 10: 3-isopropyl-2-hexene – Condensed Structural Formula (SAMPLE ANSWER BELOW)

Photo 11: 3-isopropyl-2-hexene – Line-angle Formula (SAMPLE ANSWER BELOW)

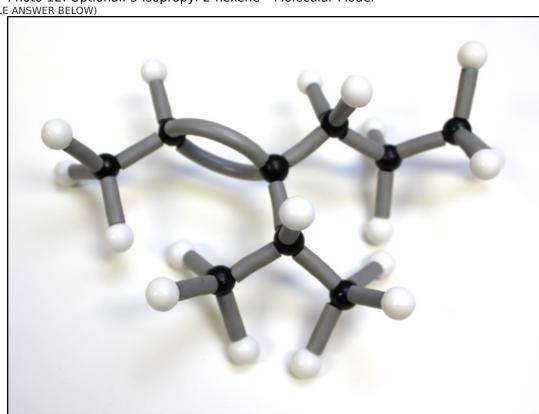


Photo 12: Optional: 3-isopropyl-2-hexene – Molecular Model (SAMPLE ANSWER BELOW)

Photo 13: 4-chlorobutanoic acid – Condensed Structural Formula (SAMPLE ANSWER BELOW)

Photo 14: 4-chlorobutanoic acid – Line-angle Formula (SAMPLE ANSWER BELOW)

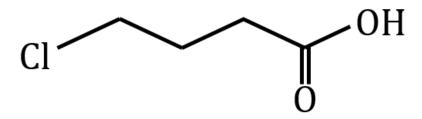
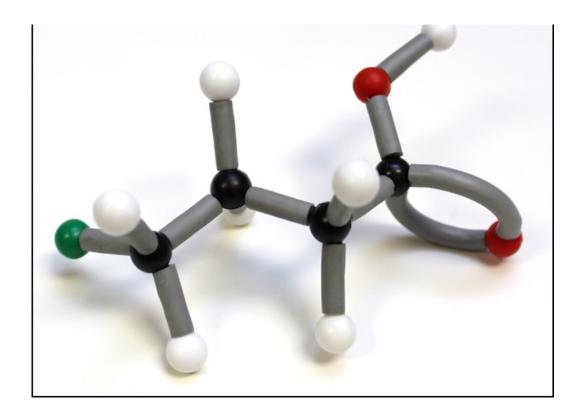



Photo 15: Optional: 4-chlorobutanoic acid – Molecular Model (SAMPLE ANSWER BELOW)

Exercise 2

Explain why the following names of the structures are incorrect.

$$\begin{array}{cccc} & & & & & \text{CH}_{3} \\ \text{CH}_{3} - \text{C} = \text{CH} - \text{CH}_{2} - \text{CH}_{3} & & & \text{CH}_{3} - \text{CH} - \text{CH}_{2} - \text{CH} = \text{CH}_{2} \\ \end{array}$$

- a. 2-ethyl-2-pentene
- b. 2-methyl-4-pentene

- a. The longest continuous chain contains 6 carbon atoms, not 5. This is correctly named 3-methyl-3-hexene.
- b. Functional groups get priority over lower numbers. This is correctly named 4-methyl-1-pentene.

Considering compounds that have the same number of carbon atoms, explain why alkanes and cycloalkanes have different molecular formulas but alkenes and cycloalkanes have the same molecular formulas.

Alkanes have 2 bonds to hydrogen atoms for every carbon in the chain, except for the end carbon atoms, which have 3 bonds to hydrogen atoms. Cycloalkanes have no end carbon atoms as they are bonded in a ring, and have 2 fewer total bonds to hydrogen than alkanes with the same number of carbon atoms. Alkenes contain a double bond between 2 carbon atoms, which means that they have 2 fewer total bonds to hydrogen than alkanes with the same number of carbon atoms. Alkanes have a general molecular formula of C_nH_{2n+2} , while alkenes and cycloalkanes have the same general molecular formula, C_nH_{2n} .

Photo 16: C5H10 Alkene #1 - Condensed Structural Formula (SAMPLE ANSWER BELOW)

$$CH_2 = CH - CH_2 - CH_2 - CH_3$$

Photo 17: Optional: C5H10 Alkene #1 - Molecular Model (SAMPLE ANSWER BELOW)

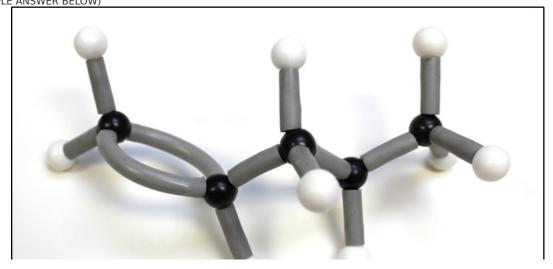
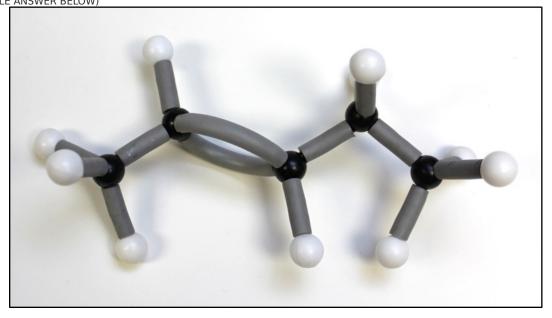
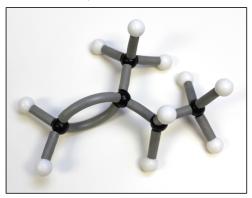


Photo 18: C5H10 Alkene #2 – Condensed Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3$$
— CH = CH — CH_2 — CH_3

Photo 19: Optional: C5H10 Alkene #2 - Molecular Model (SAMPLE ANSWER BELOW)




Photo 20: C5H10 Alkene #3 – Condensed Structural Formula (SAMPLE ANSWER BELOW)

$$CH_3$$

$$CH_2 = C - CH_2 - CH_3$$
or
$$CH_3$$

$$CH_3 - C = CH - CH_3$$

Photo 21: Optional: C5H10 Alkene #3 - Molecular Model (SAMPLE ANSWER BELOW)

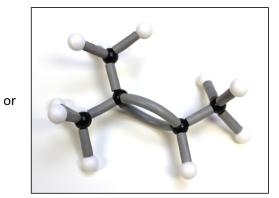


Photo 22: C5H10 Cyclic Isomer #1 – Line-Angle Formula (SAMPLE ANSWER BELOW)

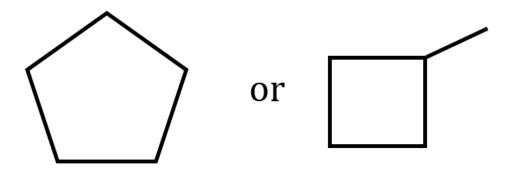
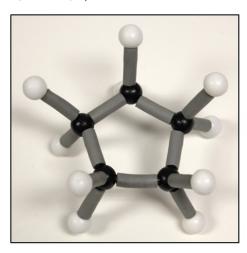



Photo 23: Optional: C5H10 Cyclic Isomer #1 – Molecular Model (SAMPLE ANSWER BELOW)

or

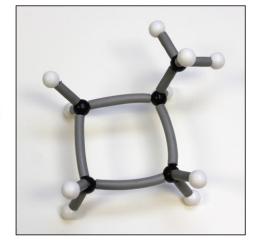
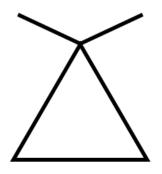



Photo 24: C5H10 Cyclic Isomer #2 – Line-Angle Formula (SAMPLE ANSWER BELOW)

or

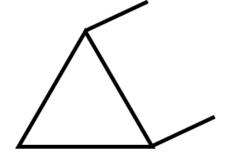


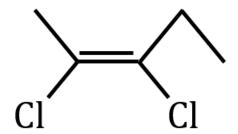
Photo 25: Optional: C5H10 Cyclic Isomer #2 – Molecular Model (SAMPLE ANSWER BELOW)

or

Data Table 1: Structural Isomers of C5H10

,	CAMDI	E A1	NCM	ED E	DEI O	۱۸/۱
١	(SAMPL	LE AI	VVCV		DELU	VV)

C ₅ H ₁₀ Isomers	Name
Alkene #1	1-pentene
Alkene #2	2-pentene
Alkene #3	2-methyl-1-butene or 2-methyl-2-butene
Cycloalkane #1	Cyclopentane or Methylcyclobutane
Cycloalkane #2	1,1-dimethylcyclopropane or 1,2-dimethylcyclopropane


Exercise 3

Describe how geometric isomers are different from structural isomers.
Structural isomers differ in how the atoms are bonded to each other, such as a straight chain vs. a branched compound with the same number of carbon atoms. Geometric isomers have all the same connections, but differ in the arrangement in 3D space.
Why is it possible for alkenes and cylcoalkanes to have <i>cis-trans</i> isomers but not alkanes?
Alkanes, with all single bonds and no cyclic structures, have free rotation around all bonds and have many possible different 3D shapes or conformers. The double bond in an alkene and the cyclic structure in cycloalkanes cannot be rotated around without breaking these connections. Thus, it is possible for alkenes and cycloalkanes to exist as cis-trans isomers.
How are <i>cis-trans</i> isomers shown in diagrams?

Cis-trans isomers of alkenes can be drawn as line-angle structures. *Cis-trans* isomers of cycloalkanes can be drawn using dash-wedge drawings.

Photo 26: cis-2,3-dichloro-2-pentene – Line-angle Formula (SAMPLE ANSWER BELOW)

APLE ANSWER BELOW)

Photo 27: Optional: cis-2,3-dichloro-2-pentene – Molecular Model (SAMPLE ANSWER BELOW)

Photo 28: trans-2,3-dichloro-2-pentene – Line-angle Formula (SAMPLE ANSWER BELOW)

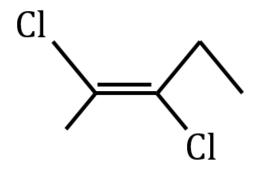


Photo 29: Optional: trans-2,3-dichloro-2-pentene – Molecular Model (SAMPLE ANSWER BELOW)

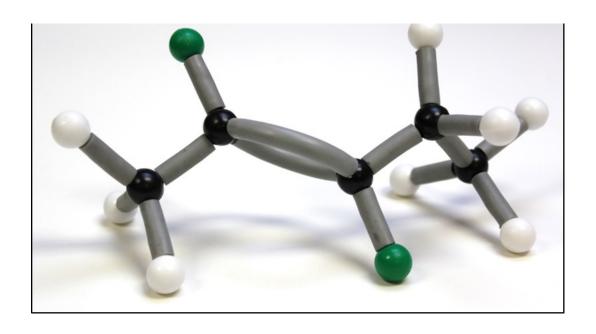


Photo 30: cis-1,3-dimethylcyclohexane – Dash-wedge Formula (SAMPLE ANSWER BELOW)

——···IIIIII

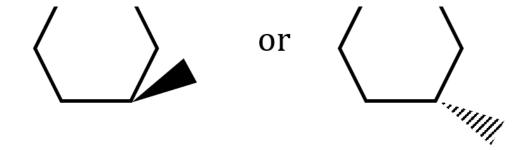
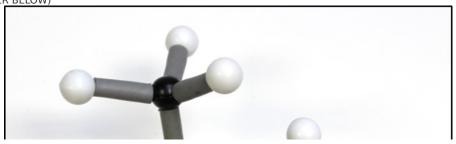



Photo 31: Optional: cis-1,3-dimethylcyclohexane – Molecular Model (SAMPLE ANSWER BELOW)

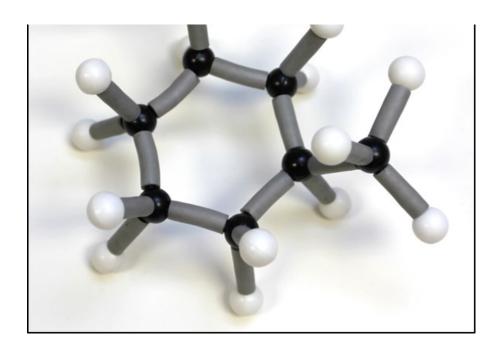


Photo 32: trans-1,3-dimethylcyclohexane – Dash-wedge Formula (SAMPLE ANSWER BELOW)

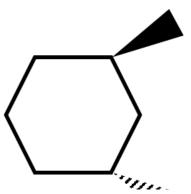
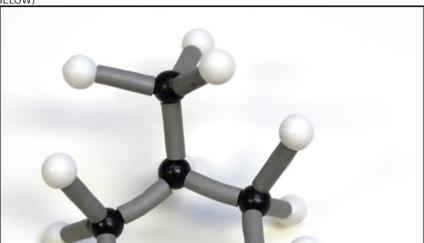
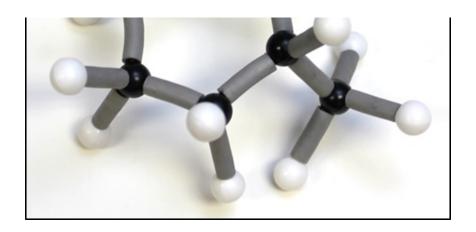
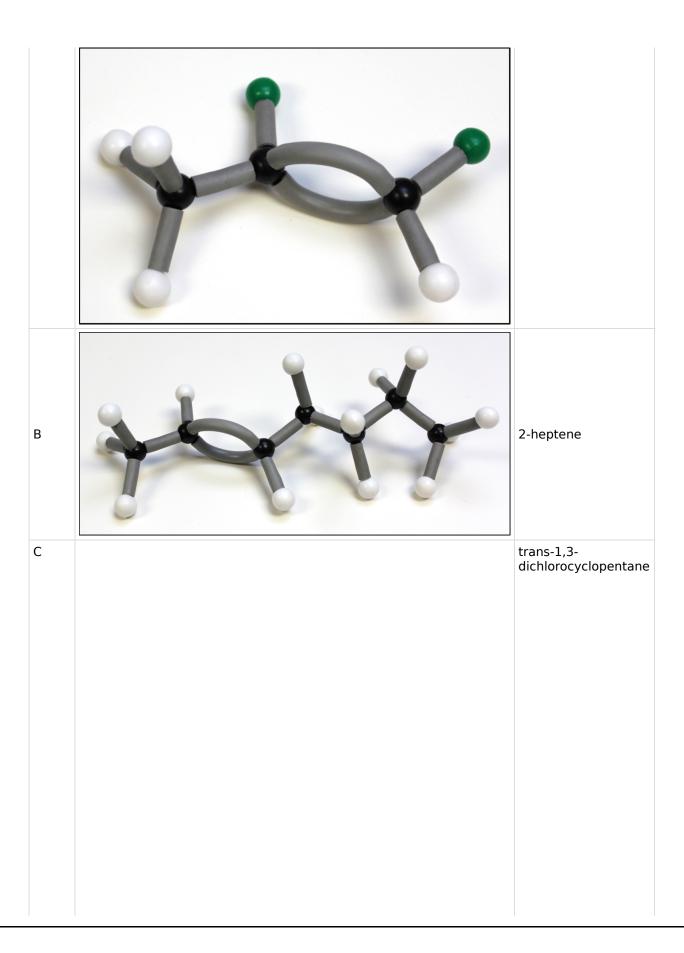




Photo 33: Optional: trans-1,3-dimethylcyclohexane – Molecular Model (SAMPLE ANSWER BELOW)



Data Table 2: IUPAC Name of Geometric Isomers (SAMPLE ANSWER BELOW)

Model	Model Image	IUPAC Name
A		cis-1,2-dichloro-1- propene

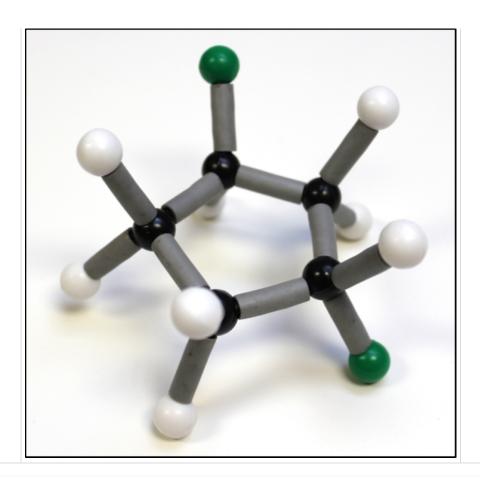


Photo 34: Model A – Line-angle Formula (SAMPLE ANSWER BELOW)

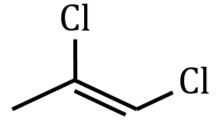


Photo 35: Model B – Line-angle Formula (SAMPLE ANSWER BELOW)

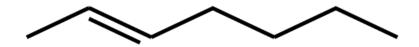
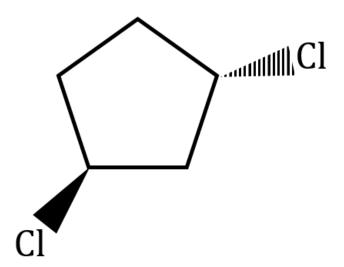
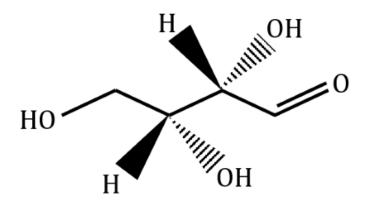



Photo 36: Model C – Line-angle Formula (SAMPLE ANSWER BELOW)

Structures that show the bonding of atoms in three-dimensions are known as ____. dash-wedge structures line-angle formulas lewis structures Lewis structures Line-angle formula Lewis structures Line-angle formula Lewis structures Line-angle formulas Lewis structures Lewis structures Lewis structures Lewis structures

	_ structures are characterized by zig-zag lines and elim	inates C and H.
	Lewis	
	Line-angle	✓
	Dash-wedge	
	Condensed molecular	
Stru	uctural formulas show bonds between all atoms and lor	ne pair electrons.
	True	
	False	~
	_ show all the atoms in the molecule, but does not included between C's and H's.	ude lines for the
		ude lines for the



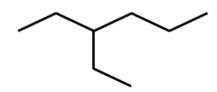
line-angle formulaLewis structure

molecular formula

dash-wedge structure

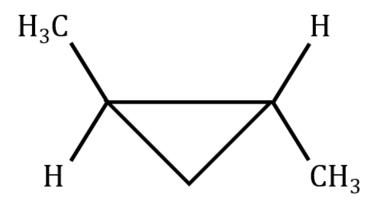
The diagram below represents a ____.

- molecular formula
- line-angle formula
- Lewis structure
- dash-wedge structure

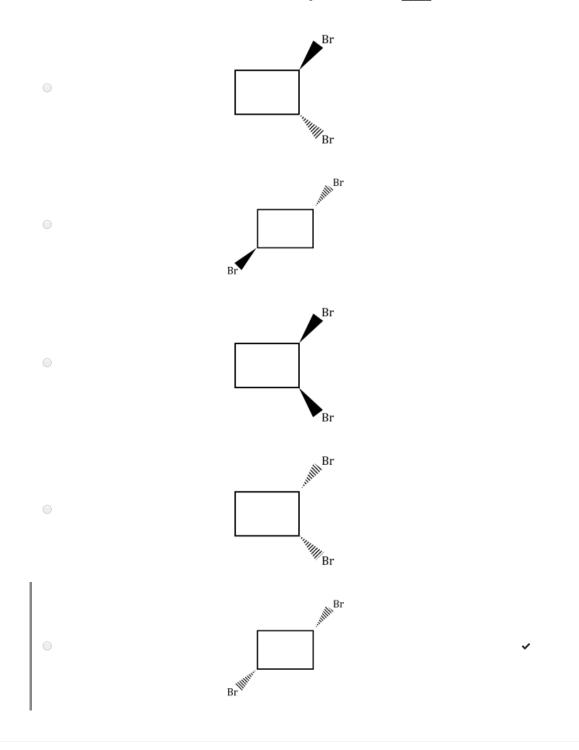

The image below represents a ____.

$\mathrm{CH_{3}CH_{2}CH_{2}CH_{3}}$

- Lewis structure
- dash-wedge structure
- line-angle formula
- o condensed molecular formula



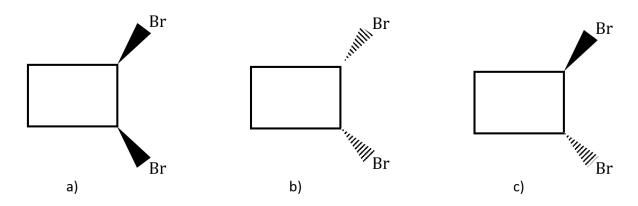
The IUPAC name for the compound below is ____.


- 3-propylbutane
- 3-ethylhexane
- octane
- ethylhexane
- 1,1-dimethylbutane

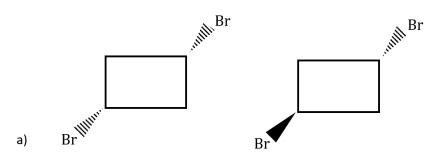
The IUPAC name for the compound below is ____.

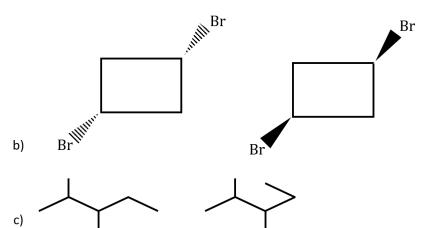
- pentane
- ocis-1,2-cyclopropane
- trans-pentane
- trans-1,2-dimethylcyclopropane
 - cyclopentane

The correct structure for cis-1,3-dibromocyclobutane is _____.



Extension Questions


One of the more challenging aspects of organic chemistry is recognizing when different structures represent different compounds, different compounds that are isomers, different conformations of the same compound, or are simply the same structure rotated



90 or 180 degrees. For example, structures (a) and (b) below look different, but are identical. Simply flip the second one over (top to bottom) and the bonds to Br will point toward you instead of away, matching the first structure. However, no amount of flipping will make structure (c) identical to the first two structures. Structure (c) represents a compound that is a geometric (cis/trans) isomer of the compound represented by structures (a) and (b).

Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.

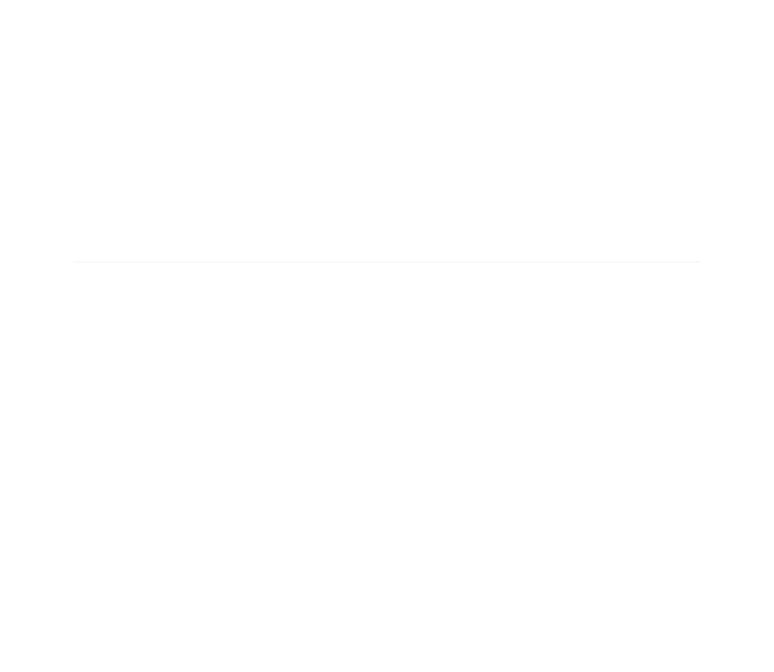
e)
$$CH_3-CH=CH-CH_2-CH_2-CH_3$$
 $CH_3-CH_2-CH=CH-CH_2-CH_3$

$$CH_3-CH_2-CH=CH-CH_2-CH_3$$

g)
$$CH_3-CH=CH-CH_2-CH_2-CH_3$$
 $CH_3-CH_2-CH_2-CH=CH-CH_3$

$$CH_3-CH_2-CH_2-CH=CH-CH_3$$

(SAMPLE ANSWER BELOW)


- a. c, geometric isomers
- b. e, same structure
- c. d, conformers of same compound
- d. e, same structure
- e. b, structural isomers
- f. f, geometric isomers
- g. e, same structure

Research the compound, retinal. Describe the role of *cis-trans* isomerism in vision. Include the structures of both *cis* and *trans* retinal in your answer. Upload images of the *cis*-retinal and *trans*-retinal in the Question 3 Photo panel after answering the question. (SAMPLE ANSWER BELOW)

Retinal has a critical role in vision. It has two isomers that are responsible for converting energy in light photons into electrical impulses in the retina. Retinal is derived when Vitamin A (trans-retinol) in the diet is converted to *cis*-retinol (an alcohol) and oxidized to form *cis*-retinal (an aldehyde). Molecules of *cis*-retinal (structure A) are found attached to the vision pigments, the opsins, such as rhodopsin. When light hits the *cis*-retinal components of the vision pigments, the *cis*- double bond is isomerized to a *trans*- double bond (structure B), changing the shape of the retinal and the shape of the opsin protein. This change in shape of the protein, through a series of rapidly-occurring steps, results in a neural signal being sent to the optical centers in the brain. Because the *trans* shape is rigid and elongated, it does not fit well in the protein. While it is in the protein, it develops a twisted conformation which is not stable or energetically favorable. Therefore, the *trans*-retinal molecules will be removed from the opsin proteins and replaced by *cis*-retinal molecules.

Upload a labeled image of *cis***-retinal and** *trans***-retinal.** (SAMPLE ANSWER BELOW)

A. B.

