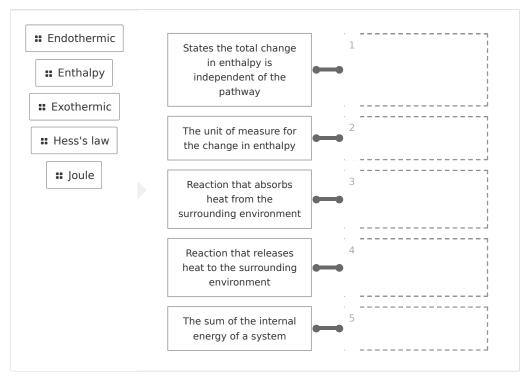
SI Chemistry - Full Discipline Demo

Digital Thermodynamics and Hess' Law - Beyond Labz

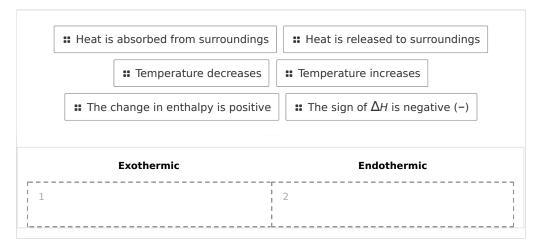

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.



Correct answers:

1 Hess's law 2 Joule 3 Endothermic 4 Exothermic 5 Enthalpy

Categorize each statement as representing an exothermic or endothermic reaction.

Correct answers:

 $1 \qquad \hbox{Heat is released to surroundings} \qquad \hbox{Temperature increases}$

The sign of ΔH is negative (-)

2 Heat is absorbed from surroundings Temperature decreases

The change in enthalpy is positive

Fill in the blank with the multiplier for ΔH based on the transformation performed on the associated equation.

Original:
$$Mg(s) + 2 H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$$
Transformed: $2 Mg(s) + 4 H^{+}(aq) \rightarrow 2 Mg^{2+}(aq) + 2$
 $H_{2}(g)$
Original: $2 H_{2}(g) + O_{2}(g) \rightarrow 2 H_{2}O(g)$
Transformed: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) + O_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g) + O_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g)$
Original: $2 H_{2}O(g) \rightarrow 2 H_{2}(g) \rightarrow 2 H_{2}(g)$

Correct answers:

1 2 2 -1 3 -2

Exploration

Enthalpy is the internal energy of the system, including heat energy.	
O True	~
- False	
The change in enthalpy of a reaction is equal to the enthalpy of the reactants minus the enthalpy of the products.	
○ True	
○ False	~
When a reaction is exothermic, the enthalpy of the products is the reactants.	
 greater than 	
less than	✓
equal to	
of no relationship to	
Hess's law states that the total change in enthalpy is independent of the pathway.	
○ True	~
○ False	
After cross-cancelling compounds that appear on both sides of the react arrows, the remaining terms should	ion
add up to 1	
 be multiplied or reversed to reflect the manipulations performed on the equations 	
also cancel out	
add up to the final equation	~

Exercise 1

Reaction 1 and Reaction 2 can be described by the following equations:

Reaction 1: NaOH(s)
$$\rightarrow$$
 Na⁺(aq) + OH⁻(aq)

$$Reaction 2: NaOH(s) + H^{+}(aq) + Cl^{-}(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

Multiply, divide, or reverse these equations until they can cancel out and add together to produce the following, which describes Reaction 3:

Reaction 3:
$$Na^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + Cl^{-}(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

Write out on a piece of paper how the first two reactions add up to equal the third, making sure to cross out the cancelled terms. Note that spectator ions (species that do not participate in the reaction) are present; your final answer may be written with or without them. Upload an image showing how the equations are added to equal Reaction 3 into Image 1. Based on how you manipulated Reactions 1 and 2, write out in this answer field a statement that describes how their corresponding AH values add to equal AH₃. Use the following format:

$$\pm n \Delta H_1 \pm n \Delta H_2 = \Delta H_3$$

where n is any integer or fraction the equations were multiplied by, and (+/-) is chosen based on whether the reaction is as written above ($\triangle H$ would be positive) or is reversed ($\triangle H$ would be negative).

0 / 10000 Ward Lineit
0 / 10000 Word Limit

Using your values for ΔH_1 and ΔH_2 , plug them into the ΔH equation you determined in the previous question to calculate ΔH_3 .

		0 / 10000 Word Limit

Compare your calculated value of ΔH_3 from the previous question to your experimentally measured value of ΔH_3 from step 75 using the percent difference equation:

$$m percent \ difference = rac{|measured-calculated|}{\left(rac{measured+calculated}{2}
ight)} imes 100\%$$

	0 / 10000 Word Limit
Which of the reactions performed in this exercise exothermic? Reference the results of Data Table	
	0 / 10000 Word Limit
Do your results support Hess' law? Explain why o	r why not.

Data Table 1: Reaction Data (SAMPLE ANSWER BELOW)

Trial	Reaction 1	Reaction 2	Reaction 3
Mass H ₂ O (g)	99.7851	99.6744	50.0390
Mass NaOH (g)	3.0161	2.9146	52.3981
Initial temperature (°C)	25.00	25.00	25.00
Max/min temperature (°C)	32.45	41.25	30.71
ΔT (°C)	7.45	16.25	5.71
m (g)	102.8012	102.5890	102.4371
q (kJ)	-3.20	-6.975	-2.45
n (mol)	0.07541	0.07287	0.04954
ΔH (kJ/mol)	-42.4	-95.72	-49.5

0 / 10000 Word Limit

Image 1: Reactions 1 and 2 Added to Equal Reaction 3 (SAMPLE ANSWER BELOW)

Naut (og) + OH (og)
$$\longrightarrow$$
 Naut (og) + Ct (og) + Ct (og) + H₂O (e)

H⁺ (og) + OH (og) \longrightarrow H₂O (e)

Competency Review

In an endothermic reaction, heat is and temperature	
released; increases	
oreleased; decreases	
absorbed; decreases	
absorbed; increases	
A chemical reaction that releases heat to the surrounding environment is considered	
enthalpy	
entropy	
endothermic	
○ exothermic ✓	
The amount of heat given off or absorbed by a chemical reaction is called .	
an exothermic reaction	
• the change in enthalpy	
a Joule the product of procesure and volume	
 the product of pressure and volume 	
Using Hess' law, the following equation is reversed as part of adding several processes up to equal a final equation.	
$2~\text{Mg}^{2+}(\text{aq})~+~2~\text{H}_2\text{O(I)} \rightarrow 2~\text{MgO(s)}~+~4~\text{H}^+(\text{aq})$	
The associated ΔH value should be	
divided by 1	
$igcup$ multiplied by the other values of ΔH	
□ multiplied by -1 ✓	
multiplied by -2	

The change in enthalpy of a reaction is equal to the enthalpy of the _____ minus the enthalpy of the ____. products; reactants reactants; products total; calorimeter calorimeter; total When an exothermic reaction occurs, the products have a greater enthalpy than the reactants, whereas during an endothermic reaction the enthalpy of the products is less than the enthalpy of the reactants. True False Hess's law indicates that if a reaction takes place in one or multiple steps, the change in enthalpy for the overall process must be the sum of the change in enthalpy of the constituent reactions. True False The percent difference in the results of an experiment with a calculated enthalpy change of -45.68 kJ/mol and a measured enthalpy change of -54.78 kJ/mol is $m percent \ difference \ = \ rac{|measured-calculated|}{\left(rac{measured+calculated}{2}
ight)} \ imes 100\%$ 0 20.10% 0 16.61% 0 18.12%

The ΔT of a reaction where the starting temperature was 28.2°C, the mass of the solution was 18.7 g, the specific heat was 5.008 J/g°C, and the final temperature was 35.4°C is _____.

○ 7.2°C

- -7.2°C
- -67.42 J
- -674.27 J

If an experiment has a q_{rxn} of 518.07 J, the change in enthalpy of the reaction if there was 0.04 moles of limiting reagent in the solution is _____.

$$\Delta H = \frac{q}{n}$$

- 12951.75 kJ/mol
- -12951.75 kJ/mol
- -12.95 kJ/mol
- 7.72 kJ/mol

The first two of the following equations will be measured to add up to the third equation:

The manipulation(s) that need(s) to be performed on the first equation

- is multiplying all of the coefficients by 2
- are multiplying all of the coefficients by 2 and reversing the equation
- is reversing the equation
- No manipulations need to be performed.

Extension Questions

Worldwide, scientists are working on different options for clean energy to replace the burning of fossil fuels. One option that could potentially be successful is the use of

hydrogen gas. This gas can be generated through a reaction between carbon and water. The following two reactions have the listed ΔH values. They can add up to the reaction discussed above, which is listed as the third equation.

$$\begin{array}{lll} CO_2(g) \to C(s) + O_2(g) & \Delta H_1 = 393.5 \ kJ \\ 2 \ H_2O(g) \to 2 \ H_2(g) + O_2(g) & \Delta H_2 = 483.6 \ kJ \\ \end{array}$$

$$C(s) + 2 H_2O(g) \rightarrow CO_2(g) + 2 H_2(g)$$
 $\Delta H_3 = ?$

Apply the equations above and your knowledge of Hess' law to determine the ΔH_3 for the reaction between carbon and water. Note whether this reaction is exothermic or endothermic.

(SAMPLE ANSWER BELOW)

Equation 1 must be reversed to properly cancel terms and add up to Equation 3.

 H_1 will therefore have its sign reversed to be negative.

$$-393.5 \text{ kJ} + 483.6 \text{ kJ} = 90.1 \text{ kJ}$$

A positive heat of reaction means that the reaction is endothermic.

