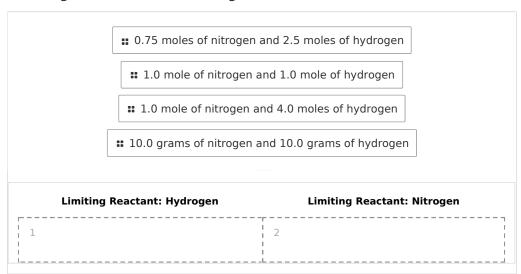
SI Chemistry - Full Discipline Demo

Digital Limiting Reactants

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo


Test Your Knowledge

Nitrogen and hydrogen react to form ammonia:

$$N_2(g) + 3H_2(g) \ \rightarrow \ 2NH_3(g)$$

Identify the limiting reactant (hydrogen or nitrogen) in each of the following combinations of starting chemicals.

Correct answers:

- 1.0 mole of nitrogen and 1.0 mole of hydrogen
- 2 0.75 moles of nitrogen and 2.5 moles of hydrogen
- 1.0 mole of nitrogen and 4.0 moles of hydrogen
- 10.0 grams of nitrogen and 10.0 grams of hydrogen

Label each type of reaction.

:: Combination

 $\mathrm{Al_2(SO_4)_3\,(aq)} + 6\mathrm{NaOH\,(aq)} \rightarrow 2\mathrm{Al(OH)_3\,(s)} + 3\mathrm{Na_2SO_4\,(aq)}$

:: Decomposition

::

 $2KClO_{3}\left(s\right) \rightarrow2KCl\left(s\right) +3O_{2}\left(g\right)$

Double displacement

:: Single displacement

 $4\mathrm{Fe}\left(\mathrm{s}
ight)+3\mathrm{O}_{2}\left(\mathrm{g}
ight)
ightarrow2\mathrm{Fe}_{2}\mathrm{O}_{3}\left(\mathrm{s}
ight)$

 $\mathrm{Cl}_{2}\left(\mathrm{g}\right)+2\mathrm{NaI}\left(\mathrm{aq}\right)
ightarrow2\mathrm{NaCl}\left(\mathrm{aq}\right)+\mathrm{I}_{2}\left(\mathrm{aq}\right)$

Correct answers:

Double displacement

Single displacement

- 2 Decomposition 3 Combination

Move the terms to complete each statement.

	: Chemical equation	: Limiting reactant	# Reactant	# Stoichiometry					
	A 1 describes a reaction that occurs between two or more								
	A	describes a reaction tr	iat occurs betw	een two or more					
	chemical substances.								
	A chemical substance that	participates and undergo	oes change in a	chemical reaction is					
	called a 2].								
		3							
	3	can be used to determin	e how much of	each reactant is					
	needed to produce a specif	ïc amount of each produ	ct.						
	, , ,								
	The reactant that is consum	ned first is referred to as	the 4].					
	Command an array								
	Correct answers:								
	1 Chemical equation	Z Reactant 3 Sto	oichiometry						
	4 Limiting reactant								
cplora	tion								
Т	he substances that into	eract in a reaction a	re called rea	ctants, while the					
SI	ubstances produced fro	om the reaction are	called produ	ıcts.					
	O True			~					
	○ False								
	he proportion of reacta hemical equation and s		be calculate	ed using a balanced					
1		-							
1	True False			~					
	- raise								

in	reaction occurs when an uncombined element displaces an eleme a compound.	
	decomposition	
	combination	
	 single displacement 	~
	 double displacement 	
	a chemical reaction, the reactant that is consumed first is referred to e	as
	stoichiometry	
	smaller reactant	
	limiting reactant	~
-	balanced equation	
	limiting product	
	the chemical equation $2Ca+O_2 \rightarrow 2CaO$, if calcium is the limiting actant, then will be in excess.	
re		
re	actant, then will be in excess.	✓
re	actant, then will be in excess. Ca	~
re	actant, then will be in excess. Ca O ₂	~
If eco	actant, then will be in excess. Ca O ₂ CaO	•

Exercise 1

What are the limiting "reagents" in Trials 1, 2, and 3 in Data Table 2?
Durand broad and shares
Bread, bread, and cheese
What was more conceptually challenging to solve in the Game simulation: problems where the molecules were hidden, or problems where the numbers were hidden? What insight does this give about how you think about these problems?
Most students will likely say it was more challenging when the molecules were hidden, which likely shows that they are counting up the images to figure out the solution.
How did you solve the Game simulation in Level 2? What information did you need to come the right answer?
Most students may discuss looking at the equation for this part of the simulationthis is often easier as looking at the more visually complicated space-filling molecules get more challenging.
How did you solve the Game simulation in Level 3? How was this different than the other levels?
With multiple reactants and products, students are likely to rely more heavily on the equation

Throughout this exercise, you likely ended up with scenarios where there was more than one "Leftover" unreacted species. How would you expect this to be different if you were working with moles of reactants rather than individual molecules?

Working with moles instead of molecules, one of the reagents is going to get used up fully, instead of having a situation where more than one molecule is unused (which might indicate in students' minds that there is more than one limiting reactant, or no limiting reactant).

Data Table 1: Cheese Sandwich Simulation

(SAMPLE ANSWER BELOW)

Trial #	# of Bread Slice "Reactants"	# of Cheese Slice "Reactants"	# of Sandwich "Products"	Leftovers
1	8	7	4	3 cheese
2				
3				

Data Table 2: Meat and Cheese Sandwich Predictions (SAMPLE ANSWER BELOW)

(SAIVIE	LE ANSWER BELOW)				
Trial	# of Bread Slices (before reaction)	# of Meat Slices (before reaction)	# of Cheese Slices (before reaction)	# of Sandwiches (after reaction)	Leftovers
1	3	3	3	1	1 bread, 2 meat, 2 cheese
2	4	4	4	2	2 meat, 2 cheese
3	8	6	2	2	4 bread, 4 meat

Data Table 3: Molecules Simulation Products (SAMPLE ANSWER BELOW)

(SAPILLE ANSWER BELOW)					
Trial	# of First Reactant Molecules	# of Second Reactant Molecules	# of Each Product	# of Leftovers	Limiting Reactant
Making Water	8	7	8 H2O	3 02	H2
Making Ammonia	8	8	4 NH3	6 N2, 2 H2	H2
Combusting Methane	3	4	2 CO2, 4 H2O	1 CH4	02

Data Table 4: Limiting Reagents Game Simulation Record

(SAMPLE ANSWER BELOW)

Level	Hidden Molecules or Numbers?	Score	Time
1	Neither	No sample answer	No sample answer
1	Molecules	No sample answer	No sample answer
1	Numbers	No sample answer	No sample answer
2	Neither	No sample answer	No sample answer
2	Molecules	No sample answer	No sample answer
2	Numbers	No sample answer	No sample answer
3	Neither	No sample answer	No sample answer
3	Molecules	No sample answer	No sample answer
3	Numbers	No sample answer	No sample answer

Competency Review

In the chemical equation $4{ m Fe}+3{ m O}_2 o 2{ m Fe}_2{ m O}_3$, 4Fe is considered a	
reactant reactant compound	
Stoichiometry can be applied to a chemical equation to calculate	
 the half-life of an element 	
 significant digits based on SI units 	
 activation energy in relation to chemical reactivity 	
 the proportions of reactants and products 	
When chlorine reacts with sodium iodide to form sodium chloride and iodine, a reaction takes place.	
combination	
decomposition	
○ single displacement ✓	
 double displacement 	

Consider a closed system in which aluminum sulfate and sodium hydroxide react to form aluminum hydroxide and sodium sulfate. If aluminum sulfate is the limiting reactant in this specific scenario, what other information can be concluded about the substances?

the	reaction	rate	will	decrease
LIIC	I Caction	I acc	V V I I I	accicasc

- the sodium hydroxide will be found in excess
- the reverse reaction will be favored
- a single displacement reaction will proceed

$$NaHCO_3(s) + HC_2H_3O_2(aq) \rightarrow C_2H_3O_2Na(aq) + H_2CO_3(aq) + H_2CO_3(aq) \rightarrow H_2O(1) + CO_2(g)$$

If 0.00416 mols of $HC_2H_3O_2$ are reacted with 0.00595 mols of $NaHCO_3$, ____ is/are considered a limiting reactant.

- HC₂H₃O₂ and NaHCO₃
- NaHCO₃
- HC₂H₃O₂
 - the products
 - no chemicals

In the double replacement reaction $2~KI~+~Pb(NO_3)_2~\to~2~KNO_3~+$ ____, what would be found in the final spot of the balanced reaction?

2 Pb(NO₃)

O Pbl₂

2 Pbl

 \circ K(NO₃)₂

Extension Questions

Consider the following reaction:

$$NH_3 + O_2 \rightarrow NO + H_2O$$

In an experiment, 3.25 g of NH_3 are allowed to react with 3.50 g of O_2 .

- a. Which reactant is the limiting reagent?
- b. How many grams of NO are formed?

c. How much of the excess reactant remains after the reaction?

(SAMPLE ANSWER BELOW)	
a. O2	
b. 2.63 g NO	
c. 1.76 g NH ₃ left	

