Test

Digital Ideal Gas Law

Final Report - Answer Guide

Institution SI Curriculum Development University

Session Test
Course Test

Instructor Corinne Brown

Test Your Knowledge

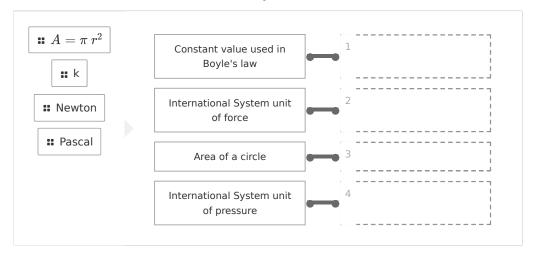
Classify each statement as true or false.

# A graph of volume versus 1/pressure displays a linear relationship.			
	law describes the relationship of a gas's pressure and temperature at twolume.		
	# Force is equal to mass times acceleration.		
	Gas particle collisions decrease as volume decreases.		
■ Pressure is the ratio of force per unit area.			
	True False		
±	' 		

Correct answers:

1 Force is equal to mass times acceleration.

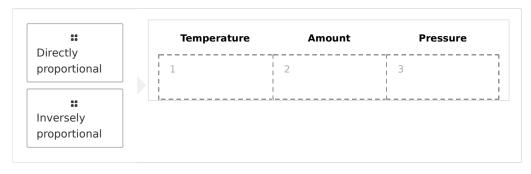
Pressure is the ratio of force per unit area.


A graph of volume versus 1/pressure displays a linear relationship.

2

Boyle's law describes the relationship of a gas's pressure and temperature at constant volume.

Gas particle collisions decrease as volume decreases.


Match each term with the best description.

Correct answers:

1 k 2 Newton 3 $A=\pi\,r^2$ 4 Pascal

According to the ideal gas law, match the relationship between the following properties and how they relate to volume of an ideal gas.

Correct answers:

- Directly proportional 2 Directly proportional
- 3 Inversely proportional

Exploration

The gas phase of matter has no fixed volume or shape.	
○ True	~
False	
When volume of gas in a closed system decreases, the pressure of the in the system	gas
decreases	
increases	✓
remains constant	
When pressure is plotted against volume, the relationship is	
• linear	
nonlinear	✓
exponential	
static	
What is the relationship between temperature and volume?	
Inverse	
Direct	✓
No Relationship	
For defining standard temperature and pressure of an ideal gas, what is temperature for STP?	s the
○ 0 K	
○ 100 K	
● 273 K	~
○ 1000 K	

The relationship between volume and moles of ideal gas is a direct relationship.			
True	~		
False			
Exercise 1			
What variables were being held constant when you collected data for:			
1. Data Table 1			
2. Data Table 2			
3. Data Table 3			
4. Data Table 4			
5. Data Table 5			
1. volume and number of moles			
2. temperature and number of moles			
3. pressure and number of moles			
4. pressure and number of moles			
5. pressure and temperature			

	Decide whether the following are directly or inversely proportional based on the data you collected. 1. Pressure and temperature		
2. Pressure and volume			
3. Volume and ter	nperature		
4. Number of mol	es and volume		
1. directly			
2. inversely			
3. directly			
4. directly			
(Ex: the red light p	particles in the simulation.)		
the same chamber v as shown in the simu	e different. We can see this principle in Avogadro's Law: different ideal gases in vill contain the same number of moles. Ideal gases may travel faster or slower, ulation, but their resultant properties (also as shown in the simulation) with gas law remain the same.		
the same chamber vas shown in the simulation respect to the ideal was why does the simulation.	will contain the same number of moles. Ideal gases may travel faster or slower, ulation, but their resultant properties (also as shown in the simulation) with gas law remain the same. ation make it difficult to turn the temperature down to 0 K? Hint: What is particles in real life at these temperatures and why is this a		

Why is the width of t	ne chamber an adequate sub	ostitute for volume?
	of the chamber (which is only	ing the width of the chamber proportionally represented in 2D by the area of the chamber
Describe how the simul	ation is (or is not) able to repre	esent the following qualities of ideal gases:
	e separated by relatively larg	
2. Gas particles ar	e constantly in random motion	on.
3. Gas particles un	dergo elastic collisions.	
4 Gas particles are	e not attracted to nor repuls	ad by each other
4. Gas particles are	inot attracted to nor repuls	ed by each other.
The average spe temperature.	ed/energy of gas molecules	in any sample is proportional to the
		0 / 10000 Word Limit
Data Table 1: R	elationship Between Temperatu	ure and Pressure
(SAMPLE ANSWER BELOW)		
Temperature (K)		Pressure (atm)
300		17.5
200		11.7

Temperature (K)	Pressure (atm)
300	17.5
200	11.7
100	5.9
500	29.2
700	40.9
900	52.6

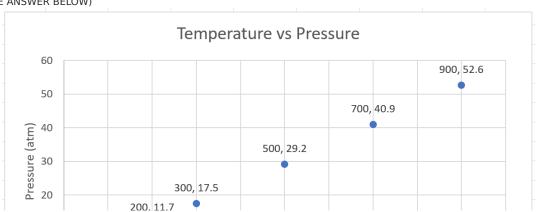
Data Table 2: Relationship Between Volume and Pressure (SAMPLE ANSWER BELOW)

Volume (Width) (nm)	Pressure (atm)

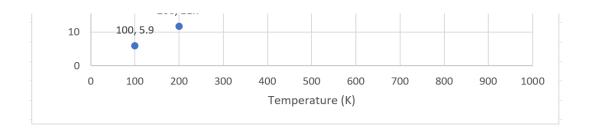
15.0	11.7
12.0	14.7
9.0	19.5
6.0	29.2

Data Table 3: Relationship Between Temperature and Volume (SAMPLE ANSWER BELOW)

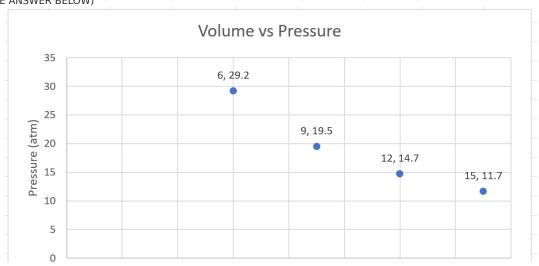
Temperature (K)	Volume (Width) (nm)
150	5.0
250	8.3
350	11.7
450	15.0

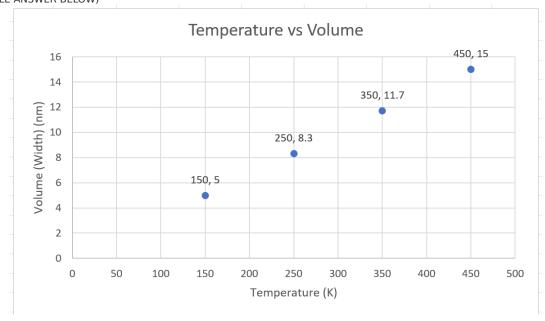

Data Table 4: Relationship Between Volume and Temperature (SAMPLE ANSWER BELOW)

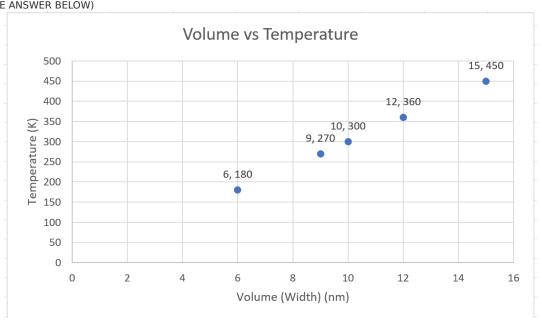
Volume (Width) (nm)	Temperature (K)
10.0	300
15.0	450
12.0	360
9.0	270
6.0	180


Data Table 5: Relationship Between Number of Particles and Volume (SAMPLE ANSWER BELOW)

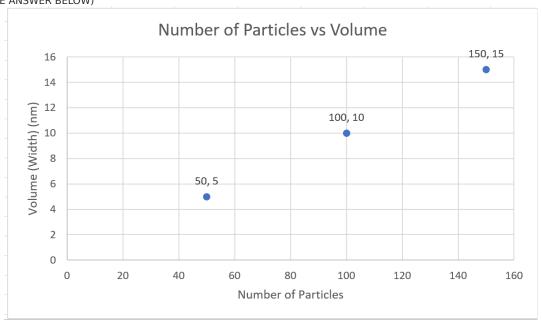
(SAMI LE ANSWER BELOW)	
Number of Particles	Volume (Width) (nm)
50	5.0
100	10.0
150	15.0
Constant temperature:	150


Graph 1: Relationship Between Temperature and Pressure (SAMPLE ANSWER BELOW)


Graph 2: Relationship Between Volume and Pressure $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$



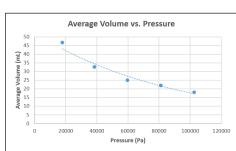
0 2 4 6 8 10 12 14 16 Volume (Width) (nm)


Graph 3: Relationship Between Temperature and Volume (SAMPLE ANSWER BELOW)

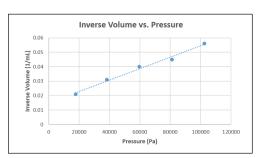
Graph 4: Relationship Between Volume and Temperature (SAMPLE ANSWER BELOW)

Graph 5: Relationship Between Number of Particles and Volume (SAMPLE ANSWER BELOW)

Gas particles in a closed system ____. are in constant motion move randomly collide with one another and the sides of the container All of the above A graph that describes the relationship of volume versus the inverse value of pressure (1/P) displays a linear relationship.



A syringe is filled with gas and sealed to create a closed system. What will happen when the plunger of the syringe is depressed?


- The volume of the gas will increase.
- The number of gas particles will decrease.
- Gas particles will have an increased rate of collisions.
- Pressure will decrease slightly.

Which scatter plot describes a linear relationship?

A:

B:

A

B

Both A and B

Neither A nor B

At a constant temperature, there are two containers: one can contain 2 liters of gas and the second can contain 20 liters of gas. If the pressure is the same in both vessels, the second container must hold _____ the number of moles of ideal gas compared to the first.

10 times

1/20th the

the same number

(Charles Law states that and are	e directly proportional.	
	temperature; volume		~
	ovolume; number of moles		
	ovolume; pressure		
	temperature; pressure		
	n the ideal gas law equation, what unit volume?	of measurement represents	
	o mililiter		
	○ liter		✓
	ounce		
	moles		
-	states that temperature and press Boyle's Law Charles' Law	sure are directly proportional.	
	Gay-Lussac's law		✓
	Avogadro's Law		
F	Pressure and volume are pro	pportional.	
	directly		
	inversely		✓
	osometimes		
	o not		

✓
I
ı
I
I

Extension Questions

A car engine is powered by burning octane (C_8H_{18}) with oxygen (O_2). The combustion reaction forms carbon dioxide (CO_2) and water (H_2O).

- a) Write the balanced chemical equation for this combustion reaction.
- b) Assuming a reaction starts with 1 mole of octane, which burns at 220°C, and is at a pressure of 1 atm, what volume will the products occupy upon reaction completion?

(SAMPLE ANSWER BELOW) a. The balanced chemical equation is $2C_8H_{18}+25~O_2 --> 16~CO_2+18~H_2O$ b. 1 mole of C_8H_{18} yields 8 moles CO_2 and 9 moles H_2O with a total of 17 moles. Solving the ideal gas equation PV = nRT V = 17 moles (0.082~L*atm/K*mol)(493K)/(1atm) V = 687 L