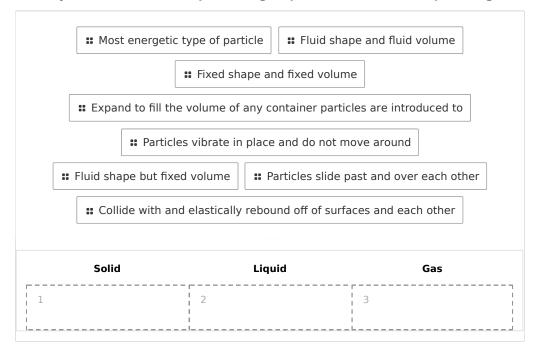
SI Chemistry - Full Discipline Demo

Digital Ideal Gas Law - Beyond Labz

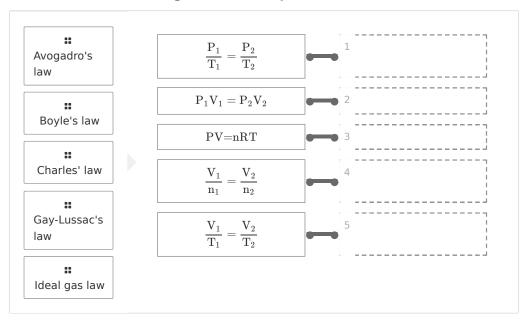
Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Classify each statement as pertaining to particles of a solid, liquid, or gas.


Correct answers:

Fixed shape and fixed volumeParticles vibrate in place and do not move around

- 2 Fluid shape but fixed volume Particles slide past and over each other
- Most energetic type of particle Fluid shape and fluid volume Expand to fill the volume of any container particles are introduced to Collide with and elastically rebound off of surfaces and each other

Match the name of each gas law to its equation.

Correct answers:

- 1 Gay-Lussac's law 2 Boyle's law 3 Ideal gas law 4 Avogadro's law
- 5 Charles' law

Arrange the variables and constants into the ideal gas law.

Correct answers:

1 P 2 V 3 n 4 R 5 T

Exploration

Gases have a fixed volume.

True

False

Gas molecule behavior is best described as _____.

- held together
- rebounding off of surfaces and each other
 - sliding past each other
 - fixed in place

Holding temperature and pressure constant reduces the ideal gas law to Avogadro's law, where $___$.

$$\bigcirc \ \frac{\mathrm{V}_1}{\mathrm{n}_1} = \frac{\mathrm{V}_2}{\mathrm{n}_2}$$

$$\bigcirc \ \frac{\mathrm{V}_1}{\mathrm{T}_1} = \frac{\mathrm{V}_2}{\mathrm{T}_2}$$

$$\mathbf{P}_1\mathbf{V}_1=\mathbf{P}_2\mathbf{V}_2$$

The ideal gas constant is symbolized with $__$ in the ideal gas law.

- (F
- T
- o n
- O R

Exercise 1

What variables were being held constant when you collected data for:

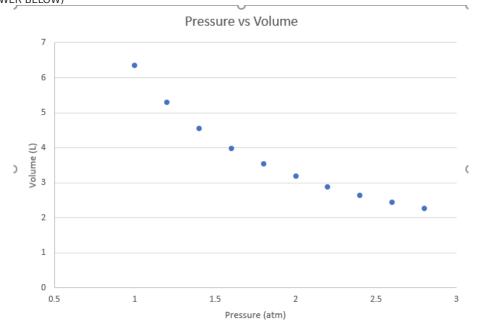
- a) Part 1: Boyle's law?
- b) Part 2: Charles' law?
- c) Part 3: Avogadro's law?
- d) Part 4: Gay-Lussac's law?

	a) number of moles and temperature
	b) number of moles and pressure
	c) temperature and pressure
	d) number of moles and volume
Docid	de whether the following are directly or inversely proportional based on the data you collected.
	a) Pressure and temperature (Gay-Lussac's law)
	b) Pressure and volume (Boyle's law)
	-
	c) Volume and temperature (Charles' law)
	d) Number of moles and volume (Avogadro's law)
	a) Directly
	b) Inversely
	c) Directly
	d) Directly
	ore than one variable was being manipulated and others were not being held constant, ain what gas law equation would need to be used to determine the other values.

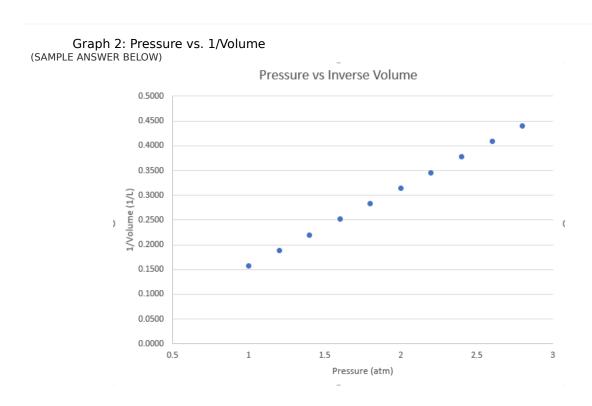
0 / 10000 Word Limit

Data Table 1: Pressure and Volume in Balloon Pressure Chamber (SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)	
Pressure (atm)	Volume (L)
1.000	6.361
1.200	5.301
1.400	4.544
1.600	3.976
1.800	3.534
Typesetting math: 100%	3.180

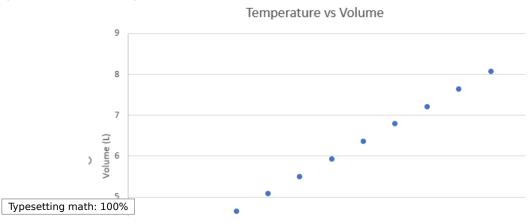


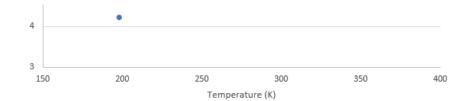
2.200	2.891
2.400	2.650
2.600	2.447
2.800	2.272


Data Table 2: Pressure and Inverse Volume (SAMPLE ANSWER BELOW)

Pressure	Inverse volume (L ⁻¹)
1.000	0.1572
1.200	0.1886
1.400	0.2201
1.600	0.2515
1.800	1.2830
2.000	0.3145
2.200	0.3459
2.400	0.3774
2.600	0.4087
2.800	0.4401

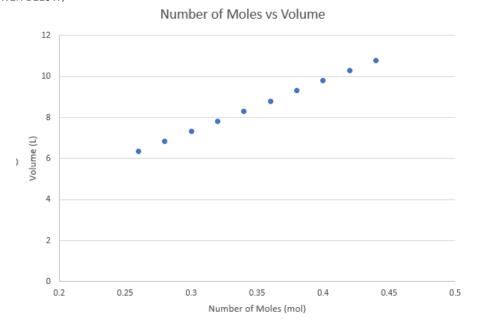
Graph 1: Pressure vs. Volume (SAMPLE ANSWER BELOW)




Data Table 3: Temperature and Volume in Balloon Pressure Chamber (SAMPLE ANSWER BELOW)

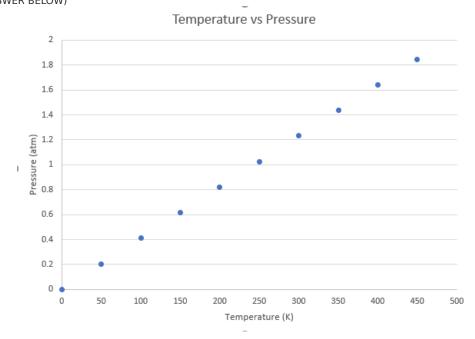
Temperature (K)	Volume (L)
298.15	6.361
318.15	6.788
338.15	7.214
358.15	7.641
378.15	8.068
278.15	5.934
258.15	5.508
238.15	5.081
218.15	4.654
198.15	4.227

Graph 3: Temperature vs. Volume (SAMPLE ANSWER BELOW)



Data Table 4: Number of Moles and Volume in Balloon Pressure Chamber (SAMPLE ANSWER BELOW)

Number of moles (mol)	Volume (L)
0.260	6.361
0.280	6.850
0.300	7.340
0.320	7.829
0.340	8.318
0.360	8.808
0.380	9.297
0.400	9.786
0.420	10.28
0.440	10.77
Typesetting math: 100%	<u> </u>

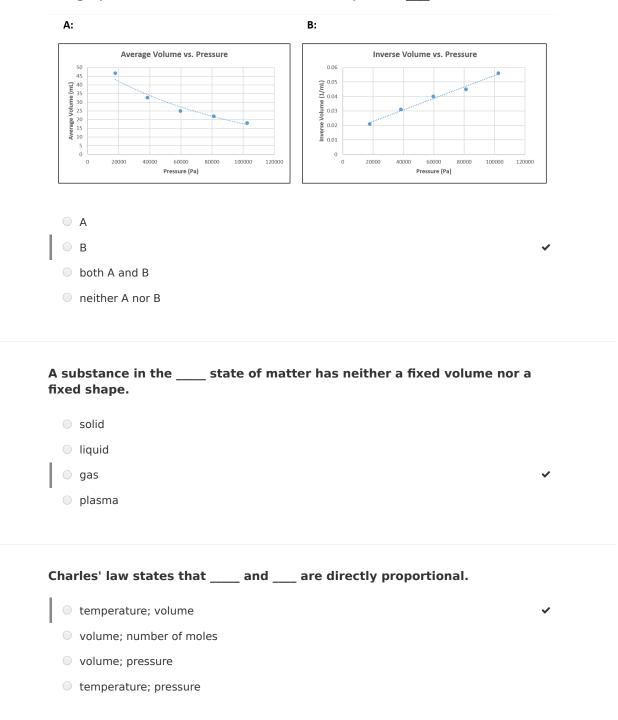


Data Table 5: Temperature and Pressure in Piston Pressure Cylinder (SAMPLE ANSWER BELOW)

Typesetting math: 100% Pressure (atm)	Typesetting math: 100%	Pressure (atm)
---------------------------------------	------------------------	----------------

0	0
50.00	0.205
100.00	0.410
150.00	0.615
200.00	0.821
250.00	1.026
300.00	1.231
350.00	1.436
400.00	1.641
150.00	1.846

Graph 5: Temperature vs. Pressure (SAMPLE ANSWER BELOW)



Competency Review

Gas particles in a closed container	
 are highly energetic 	
 expand to fill the volume of the container 	
 collide elastically with each another and the sides of the container 	
All of the above	~
A graph that describes the relationship of pressure versus the inverse value of volume ($^1/_V$) displays a linear relationship.	
○ True	✓
○ False	
A syringe is filled with gas and sealed to create a closed system. When plunger of the syringe is depressed,	the
 the volume of the gas will increase 	
the number of gas particles will decrease	
the pressure will increase	✓
the number of gas particles will increase	

The graph(s) that show(s) a linear relationship is/are ____.

proportional.	between and is directly
o number of moles; temperature	
temperature; volume	
opressure; volume	
ovolume; number of moles	~
	ay that relate(s) to the
The ideal gas law equation describes the would be made of moles of gas and temperature.	ay that relate(s) to the
The ideal gas law equation describes the w	ay that relate(s) to the
The ideal gas law equation describes the w number of moles of gas and temperature.	
The ideal gas law equation describes the wonumber of moles of gas and temperature.	

Extension Questions

The compound sodium azide explodes in a chemical reaction that converts the solid to broken-down gas components in one of the fastest reactions known, and it was therefore used as the species that inflated airbags for many years. If an accident occurs at a temperature of 299.65 K and an atmospheric pressure of 1.000 atm, releasing 0.156 moles of gas, apply your knowledge of the ideal gas law to determine the volume of the gas that will fill the airbag. To align with the units, use the value of the gas constant $R = 0.08206 \, ^{\text{L} \cdot \text{atm}}/_{\text{mol} \cdot \text{K}}$. Show all of your calculations in your answer. (SAMPLE ANSWER BELOW)

PV=nRT
V = nRT/P
V= (0.156)(0.08206)(299.65)/(1.000)
V=3.83 L
3.83 L of gas would be released to fill the airbag.

A vehicle sitting outside after a hot day experiences an unexpected freeze overnight. Despite the tires being well-sealed, they decrease in size and get flatter. Which gas law must be used to describe this scenario with the gas within the tires? What variable(s) remained constant? What variable(s) changed? (SAMPLE ANSWER BELOW)

The ideal gas law (PV=nRT) must be used to describe this scenario, as only one variable is being held constant. The number of moles, n, is the only constant variable. The volume V, pressure P, and temperature T are the variables that changed.

