SI Chemistry - Full Discipline Demo

Digital Colligative Properties - Beyond Labz

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Identify the following statements as true or false.

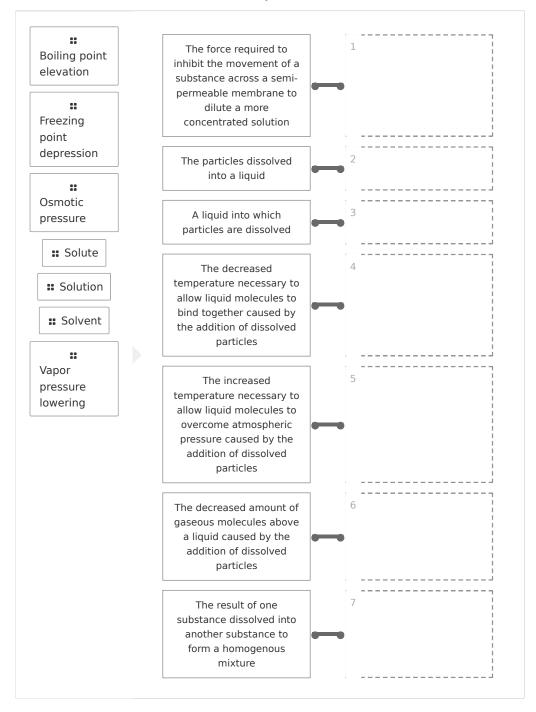
	## A 2.0% NaCl solution has a higher vapor pressure than pure water.	
	A 5.0% NaCl solution has a lower freezing point than a 2.0% NaCl solution.	
	# A 5.0% sucrose solution has a higher boiling point than pure water.	
	::	
A 5	% sucrose solution has a higher osmotic pressure than a 10% sucrose solution.	
A 5		
A 5	% sucrose solution has a higher osmotic pressure than a 10% sucrose solution.	
A 5	% sucrose solution has a higher osmotic pressure than a 10% sucrose solution.	

Correct answers:

1 A 5.0% sucrose solution has a higher boiling point than pure water.

A 5.0% NaCl solution has a lower freezing point than a 2.0% NaCl solution.

A 10% NaCl solution has a higher boiling point than a 5% NaCl solution.


2 A 2.0% NaCl solution has a higher freezing point than pure water.

A 5.0% sucrose solution has a higher osmotic pressure than a 10% sucrose solution.

A 2.0% NaCl solution has a higher vapor pressure than pure water.

Match each term with the best description.

Correct answers:

- 1 Osmotic pressure 2 Solute 3 Solvent 4 Freezing point depression
- 5 Boiling point elevation 6 Vapor pressure lowering 7 Solution

Identify the term needed to validate each equation.

Freezing point depression equation:
$\Delta T = K_f \bullet 1$
Definition of molality:
Definition of molar mass:
molar mass • moles = 3
grams m (molality) kg of solvent
Correct answers:
1 m (molality) 2 kg of solvent 3 grams

Exploration

Colligative properties are properties that are dependent only on the identity of the solute, but not dependent on the ratio of solute to solvent particles in the solution.

		the molar mass of a solute.
O True		~
False		
Boiling point elevate a solute.	tion measurements can be us	sed to determine the of
lustre		
molarity		
density		
molality		✓
orcico 1		
ercise 1		
eat species was the solute	e in the solution used in this	experiment? What species was the
V-Circi		
		0 / 10000 Word Limit
w did the addition of the sults in Data Table 1 in yo		t of the solution? Reference your
, , , , , , , , , , , , , , , , , , , ,		
•		
,		
		0 / 10000 Word Limit
		0 / 10000 Word Limit
w is boiling point elevatio	on used to compute the mola in Data Table 1 in your answe	r mass of the solute? Reference you
w is boiling point elevatio		0 / 10000 Word Limit r mass of the solute? Reference you er.
w is boiling point elevatio		r mass of the solute? Reference you

	0 / 10000 Word Lim
	0 / 10000 Word Lim
Data Table 1: Boiling Point Elevation Data SAMPLE ANSWER BELOW)	
Mass water (g)	100.0833
lax temp water (°C)	100.15
Mass NaCl (g)	4.9668
lax temp salt water (°C)	101.14
IT (°C)	0.99
Molality (m)	0.97
lumber of moles of NaCl (mol)	0.097
Molar mass of NaCl (g/mol)	51
Percent error (%)	13%
exercise 2	experiment? What species was the
/hat species was the solute in the solution used in this olvent?	experiment. That species was the
	0 / 10000 Word Lim

	0 / 10000 Word Limi
Data Table 2: Freezing Point Depression Data	
(SAMPLE ANSWER BELOW) Mass NaCl (g)	5.0165
Mass water (g)	99.4405
Mass ice (g)	50.5600
Minimum temp water (°C)	0.00
Minimum temp salt water (°C)	-2.17
ΔT (°C)	2.17
Molality (m)	0.583
Number of moles of NaCl (mol)	0.0875
Molar mass of NaCl (g/mol)	57.3
	1.90
	-volatile solute particles has
Competency Review A solution that contains a solvent and non a lower vapor pressure than a pure solven	n-volatile solute particles has it under the same conditions.
Competency Review A solution that contains a solvent and non a lower vapor pressure than a pure solven	n-volatile solute particles has at under the same conditions.
A solution that contains a solvent and non a lower vapor pressure than a pure solven True False The temperature at which the outward preescape into the gas phase is surpassing the	n-volatile solute particles has at under the same conditions.
A solution that contains a solvent and non a lower vapor pressure than a pure solven True False The temperature at which the outward preescape into the gas phase is surpassing the them in the liquid phase is the	n-volatile solute particles has at under the same conditions.
a lower vapor pressure than a pure solven True False The temperature at which the outward preescape into the gas phase is surpassing the them in the liquid phase is the freezing point	n-volatile solute particles has at under the same conditions.

Adding sugar to water the solution's boiling point.	
increases	~
decreases	
 does not change 	
inverts	
If two solutions of different concentrations are separated permeable membrane, solvent from the more concentrated spass through the membrane into the less concentrated spansors.	ted solution will
True	
○ False	~
has a freezing point depression of 4.3°C and a van 't Hof	f factor of 1. The
Ten grams of a solute is dissolved in 500 mL of a solvent, has a freezing point depression of 4.3°C and a van 't Hoff other information needed to determine the molar mass of	ff factor of 1. The of the solute is the
has a freezing point depression of 4.3°C and a van 't Hoffother information needed to determine the molar mass of the molar mass of the molar mass of the molarity	ff factor of 1. The of the solute is the
has a freezing point depression of 4.3°C and a van 't Hoff other information needed to determine the molar mass of the molar mass of the molarity of temperature of freezing point depression constant	ff factor of 1. The of the solute is the
has a freezing point depression of 4.3°C and a van 't Hoff other information needed to determine the molar mass of molarity molarity temperature freezing point depression constant The molar mass can be determined by the factors already given.	ff factor of 1. The of the solute is the
has a freezing point depression of 4.3°C and a van 't Hoff other information needed to determine the molar mass of the molarity of temperature of the molar mass can be determined by the factors already given. When salt is added to ice, the freezing point is	ff factor of 1. The of the solute is the
has a freezing point depression of 4.3°C and a van 't Hoff other information needed to determine the molar mass of the molarity of temperature of the freezing point depression constant of the molar mass can be determined by the factors already given. When salt is added to ice, the freezing point is	ff factor of 1. The of the solute is the

6.41 g of a solute was added to 0.255 kg of water and ice, and colligative properties experiments determined that the freezing point decreased by 3.67°C. Using the K_f of water (1.86°C/m) and these data points, the molar mass of the solute was determined to be ______. Note: the solute did not dissociate in water.

$$\begin{split} \Delta T_f &= K_f \cdot \ m \cdot i \\ molality &= \frac{moles \ solute}{kg \ solvent} \\ molar \ mass &= \frac{grams \ of \ compound}{moles \ of \ compound} \\ &= 3.23 \ g/mol \\ &= 12.7 \ g/mol \\ &= 25.5 \ g/mol \\ &= The \ molar \ mass \ could \ not \ be \ determined. \end{split}$$

The amount of solute was doubled in a colligative properties freezing point depression experiment. The solution with the larger amount of solute had a(n) _____ freezing point compared to the freezing point with the smaller amount of solute.

higherlowerunchangedindeterminate

Extension Questions

The molar mass of $CaCl_2$ is 110.98 g. By how many degrees would the freezing point decrease in a solution of 0.420 kg of water containing 12.98 g of $CaCl_2$? The K_f of water is 1.86°C/m, and the van 't Hoff factor of $CaCl_2$ is 3.

$$\begin{split} \Delta T_f &= K_f \cdot m \cdot i \\ molality &= \frac{moles \, solute}{kg \, solvent} \\ molar \, mass &= \frac{grams \, of \, compound}{moles \, of \, compound} \\ (SAMPLE \, ANSWER \, BELOW) \\ 1.55 ^{\circ}C \\ Use \, molar \, mass \, definition \, to \, solve \, for \, the \, moles \, of \, CaCl_2: \\ moles \, compound &= \, g \, compound/molar \, mass \\ Then \, determine \, the \, molality: \\ molality &= moles \, solute/kg \, solvent \\ Typesetting \, math: \, 100\% \end{split}$$

Then use the freezing point depression equation to solve for the change in freezing temperature.

While they are two distinct phenomena, boiling point elevation and vapor pressure lowering are related colligative properties. Explain how the vapor pressure of a solvent being lowered when solutes are dissolved in it contributes to the boiling point necessarily needing to be a higher temperature. (SAMPLE ANSWER BELOW)

Because the boiling point of a solvent is about the vapor pressure overcoming the atmospheric pressure, if the vapor pressure is decreased by adding a solute, the boiling point must necessarily be a higher temperature for solvent particles to begin overcoming the atmospheric pressure.

