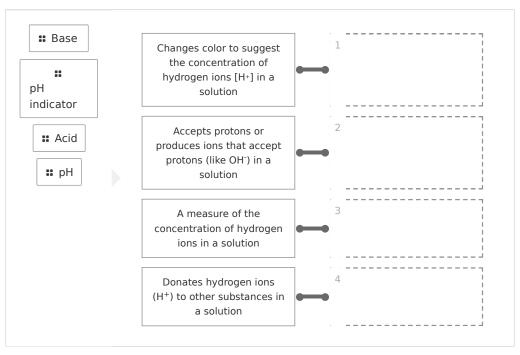
SI Chemistry - Full Discipline Demo

Digital Acid Base Chemistry - Beyond Labz

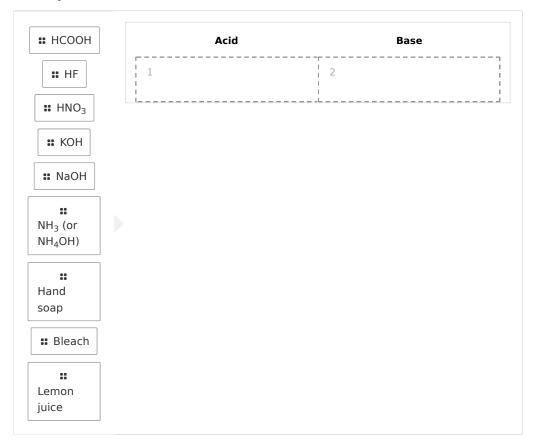

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

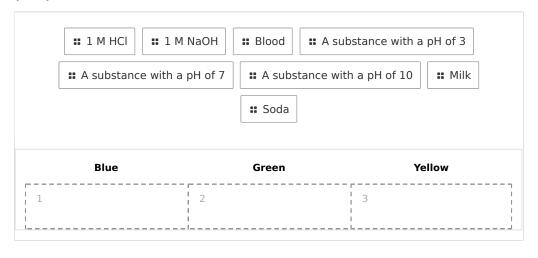
Test Your Knowledge

Match each term with the best description.



Correct answers:

1 pH indicator 2 Base 3 pH 4 Acid


Classify each substance as an acid or base.

Correct answers:

- 1 HF HCOOH HNO₃ Lemon juice
- 2 KOH Bleach Hand soap NH₃ (or NH₄OH) NaOH

Predict the color that results from adding a drop of bromothymol blue (BTB) to each solution.

Correct answers:

- 1 1 M NaOH A substance with a pH of 10
- 2 A substance with a pH of 7 Blood Milk
- 3 1 M HCl A substance with a pH of 3 Soda

Exploration

Weak bases are not hazardous no matter their concentration.

True	
False	✓
ds are substances that produce	
fats and oils	
H ⁺ ions	✓
toxicity	
OH ⁻ ions	
	ds are substances that produce fats and oils H ⁺ ions toxicity

The logarithm for pH is based on the concentration of in solution.	
○ H ⁺ ions	
salt	
○ OH ⁻ ions	
○ water	
A pH changes color at different pH values.	
○ scale	
○ indicator ✓	
o value	
None of the above	
Exercise 1 Rank the chemicals listed in Data Table 1 from the lowest to highest pH.	
(lowest pH) H ₂ SO ₄ , HCl, H ₂ SO ₃ , CH ₃ COOH, HCN, NH ₄ Cl, KNO ₃ , NaCH ₃ COO, NaHCO ₃ , NaCN, NH ₃	3,
Na ₃ PO ₄ , NaOH (highest pH)	•
When you created hypotheses to guess whether each chemical was an acid or base, what pecifically did you look for in the chemical formulas?	:
If a chemical appears to ionize to create hydrogen ions, students should guess it is an acid. If students think it would accept a hydrogen or create hydroxide ions, students should guess it is base. (Students may discuss basic salts having a sodium atom in the formula as a clue that a hydrogen could be accepted there.)	а

Write the chemical equation of ${ m HNO_3}$ dissociating in a solution the chemical dissociates, is ${ m HNO_3}$ an acid or a base? Explain here	
$HNO_3(aq) \rightleftharpoons H^+(aq) + NO_3^-(aq)$	
\ensuremath{HNO}_3 is an acid because it dissociates to form $\ensuremath{H^+}$ ions	
Write the chemical equation of KOH dissociating in a solution the chemical dissociates, is KOH an acid or a base? Explain how yo	
$KOH(aq) \rightleftharpoons K^{+}(aq) + OH^{-}(aq)$	
KOH is a base because it forms the H ⁺ acceptor OH ⁻ in solution.	
Consider putting a drop of bromocresol purple into a sample, vitell whether this liquid is acidic, basic, or neutral? Describe will differentiate between.	
The sample is not an acid, but we cannot distinguish between whe	ether it is basic or neutral.
Consider putting a drop of bromocresol purple into a sample one of the solution? What is the advant of indicators?	
	0 / 10000 Word Limit

Data Table 1: Acidic and Basic Solution Prediction

	Acid, base, or neutral?	рН	Solution indicator color
NH ₄ Cl	acid	5.20	yellow
H ₂ SO ₃	acid	1.53	yellow
NaHCO ₃	base	9.59	purple
HCN	acid	5.10	yellow
CH ₃ COOH ("HAc")	acid	2.88	yellow
NaOH	base	12.92	purple
KNO ₃	neural	7.00	purple
HCI	acid	1.07	yellow
Na ₃ PO ₄	base	12.08	purple
NaCN	base	11.00	purple
NH ₃	base	11.11	purple
NaCH ₃ COO ("NaAc")	base	8.79	purple
H ₂ SO ₄	acid	1.02	yellow

Data Table 2: Making Solutions from Solids (SAMPLE ANSWER BELOW)

	Solid	Molecular mass (g/mol)	Approx mass needed (g)	Actual mass (g)	Volume water needed (mL)	Actual volume water (mL)	Final molarity (M)
--	-------	------------------------------	---------------------------	-----------------------	-----------------------------	--------------------------	--------------------------

NH ₄ CI	53.49	0.134	0.1461	27.31	27.39	0.09972
NaHCO ₃	84.01	0.210	0.2023	24.08	24.06	0.1001
KNO ₃	101.10	0.253	0.2558	25.30	25.31	0.09997

Data Table 3: Making Solutions from Stocks

Stock solution	Amnt of soln delivered (mL)	Total volume needed (mL)	Volume water needed (mL)	Actual volume water (mL)	Final molarity (M)
H ₂ SO ₄	25.19	28.04	2.85	2.86	0.09995
HCN	25.11	25.56	0.45	0.45	0.1000
CH ₃ COOH ("HAc")	25.20	26.03	0.83	0.82	0.1000
NaOH	24.90	27.49	2.59	2.54	0.1002
HCI	24.79	25.56	0.77	0.75	0.1001
Na ₃ PO ₄	24.84	25.19	0.35	0.35	0.1000
NaCN	25.09	27.52	2.43	2.42	0.1000
NH ₃	24.90	123.23	98.33	98.55	0.09982
NaCH ₃ COO ("NaAc")	24.91	28.80	3.89	3.87	0.1001
H ₂ SO ₄	25.22	62.72	37.50	37.49	0.1000

Competency Review

Acids are substances that are characterized by thei or ions.	r ability to donate,
o neutrons; hydrogen	
o protons; hydrogen	~
protons; hydroxide	
None of the above	
The greater the number of hydroxide ions in a solut solution. True	ion, the more acidic the

coffee and hand soap.	
○ True	
○ False	~
Based on the logarithm for pH, a pH of 2 is times more acidic than a pH of 4.	a
O 1	
O 2	
O 10	
○ 100	~
A neutral substance is a substance that has a pH of 0.	
O True	
○ False	~
A pH of indicates an acidic solution.	
○ 3	~
0 7	
O 12	
O None of the above	
pH is a measure of the concentration of ions in a solution.	
osodium	
○ water	
hydroxide	
hydrogen	~

Concentrated acids and bases are found in everyday substances such as

Bromocresol purple turns ____ in a strong acidic solution.

Light blue

Purple

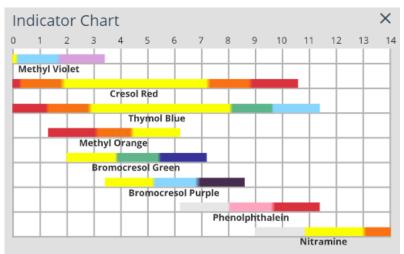
Yellow

Green

Suppose you are trying to create a standard solution from a solid with a molecular weight of 60.21~g/mol. You intend to create approximately 50~mL of a 0.3000~M solution. Which of these is an appropriate mass of solid to begin with? Start by using the following equation:

grams solid = 0.050 L soln $\times \frac{0.3000\,\mathrm{mol\,solid}}{\mathrm{L}} \times \frac{x\,\mathrm{g\,solid}}{1\,\mathrm{mol\,solid}}$

908.2 g


0.9502 g

○ 10.0521 g

0.0021 g

Extension Questions

A scientist has a bottle of nitric acid at an unknown concentration. She adds a drop of bromocresol green to a small sample from the bottle, and the solution turns green. Is it possible that this acid is a strong acid? Use the indicator chart to help you decide. Explain your reasoning.

(SAMPLE ANSWER BELOW)

Yes, it is possible that it is a strong acid. The pH is related to the amount of H^+ in solution, and nitric acid produces H^+ , so if it is a dilute nitric acid solution, it is reasonable for the pH to be between 3.8-5.4, where bromocresol blue is green.

