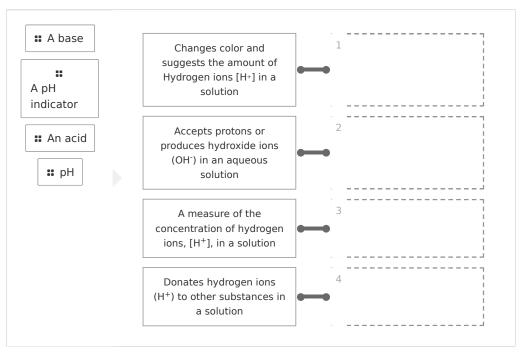
Test

Digital Acid-Base Chemistry

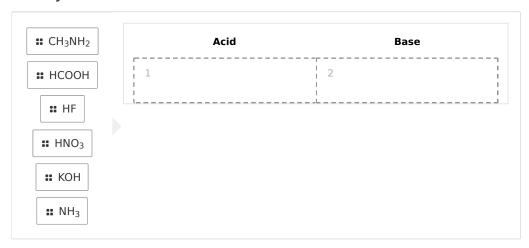
Final Report - Answer Guide


Institution SI Curriculum Development University

Session Test
Course Test

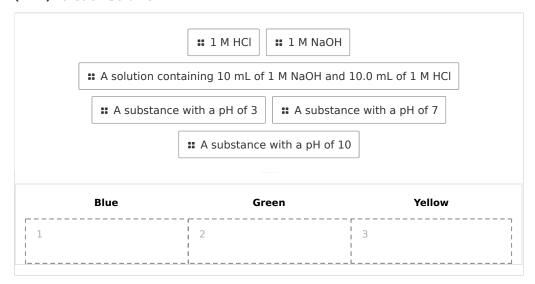
Instructor Corinne Brown

Test Your Knowledge


Match each term with the best description.

Correct answers:

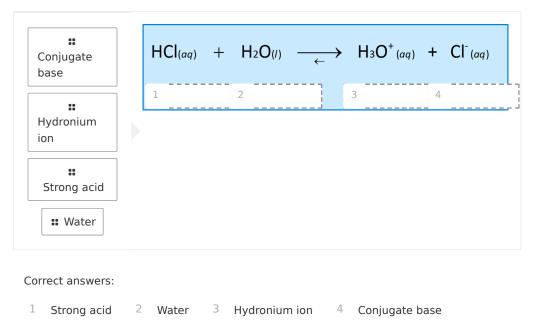
 $1 \quad \text{A pH indicator} \qquad 2 \quad \text{A base} \qquad 3 \quad \text{pH} \qquad 4 \quad \text{An acid}$


Classify each chemical as an acid or base.

Correct answers:

 $1 \quad \mathsf{HF} \quad \mathsf{HCOOH} \quad \mathsf{HNO_3} \qquad \quad 2 \quad \mathsf{CH_3NH_2} \quad \mathsf{KOH} \quad \mathsf{NH_3}$

Predict the color that results from adding a drop of bromothymol blue (BTB) to each solution.


Correct answers:

- 1 1 M NaOH A substance with a pH of 10
- $^2\,$ A solution containing 10 mL of 1 M NaOH and 10.0 mL of 1 M HCl

A substance with a pH of 7

3 1 M HCl A substance with a pH of 3

Label each substance in the chemical reaction.

Exploration

The greater the number of hydrogen ions in a solution, the more acidic the solution.

Bases feel slippery to the skin because they degrade the $___$ and $___$ in the skin.

fatty acids; dirtbacteria; oilsfatty acids; oilsAll of the above

	The logarithm for pH is based on a scale of	
	O 1	
	O 10	✓
	0 100	
	1000	
	A pH changes color at a specific pH or over the course of a pH range	: .
	scale	
	indicator	✓
	value	
	 None of the above 	
	Strong acids and bases only partially dissociate in water.	
	True	
	○ False	~
	A conjugate acid is formed when the acid accepts a proton.	
	True	
	False	~
Exerc	ise 1	
ontain	ve two beakers. One contains 500 mL of an NH_4OH (weak base) solution an s 500 mL of an $NaOH$ (strong base) solution. You test the pH of the two so one has the higher pH? How do you know?	

Without knowing the concentrations of the two solutions, we can't say which has the higher pH. Just because a base is weak does not mean it automatically has a lower pH than a strong base.

hy might some scientists use litmus paper to evaluate pH? When is a digital pH probe eeded?
Litmus paper is a quick, simple method for determining pH if an exact value isn't needed. A pH probe will give an exact value when more specificity is required.
poking at the simulation of a strong acid in water, what particle appears to be missing? Hint: use the Graph View to visualize). Why is this the case? What is different about what appens to the particles of a weak acid or base vs a strong acid or base in water?
The HA particle appears to be missing. This is because the proton dissociates completely from A- in a strong acid.
Weak acids and bases do not completely dissociate in waterlooking at the simulation, there are HA and BOH particles present in solutions of weak acids and bases.
ou have three beakers. The first contains a solution of 0.10 M hydrocyanic acid (weak acid) ne second contains a solution of 0.10 M acetic acid (weak acid); the third contains a solution of 0.10 M nitric acid (strong acid). Without further information, can you make any claims bout which solution will have the lowest pH? Can you make any claims about which solutio ill have the highest pH?
Nitric acid will have the lowest pH, because it is a strong acid at the same concentration as the two weak acids it's being compared to. However, we can't make any claims about which weak base has the higher pH without knowing which is weaker.

If a more concentrated initial solution of sodium bicarbonate was used in beaker C, would it require more or less bicarbonate to neutralize the acid? Why?

0 / 10000 Word Limit

Data Table 1: Initial pH Test Results

(SAMPLE ANSWER BELOW)

Container	Chemical Contents	Initial pH
Α	water	7
В	HCI	1
С	NaHCO3	9

Data Table 2: Neutralization of an Acid

(SAMPLE ANSWER BELOW)

Total NaHCO ₃ Added (g)	Beaker C pH
0.5 (initial)	4
1.0	5
1.5	6

Data Table 3: pH Measures of Default Solutions (SAMPLE ANSWER BELOW)

	Litmus Color	Estimated pH	pH Probe Reading
Weak Acid	yellow	(should be within 1 pH of unit of true value)	4.50
Strong Acid	orange		2.00
Weak Base	dark green		9.50
Strong Base	blue		12.00

Data Table 4: pH Measures of Custom Solutions

(SAMPLE ANSWER BELOW)

					Reading
	High	Weaker Acid	yellow	(should be within 1 unit of true value)	5.00
Weak	Conc	Stronger Acid	pink		0.00
	Low Conc	Weaker Acid	light green		6.50
		Stronger Acid	light orange		3.00
1	Weak	Conc	Weak Low Conc Stronger Acid Weaker Acid Stronger	Weak Low Conc Stronger Acid Pink Weaker Acid light green Stronger light	Weak Low Conc Stronger pink Weaker Acid light green Stronger light

	Strong	High Conc		pink	0.00
		Low Conc		orange	3.00
		High	Weaker Base	dark green	9.00
	Weak	Conc	Stronger Base	dark blue	14.00
Base		Low Conc	Weaker Base	green	7.50
			Stronger Base	teal	11.00
	Strong	High Conc		dark blue	14.00
		Low Conc		teal	11.00

Data Table 5: Calculated Acid & Base Values (SAMPLE ANSWER BELOW)

(SAIVIFLE A	NSWER BELOW,	·				
				[H ⁺]	[OH ⁻]	рОН
		High Conc	Weaker Acid	1.00x10^-5	1.00x10^-9	9.00
	Weak	High Conc	Stronger Acid	9.90×10^-1	1.01x10^-14	14.00
Acid	vveak	Low Conc	Weaker Acid	3.16x10^-7	3.16x10^-8	7.50
ACIU		LOW COILC	Stronger Acid	1.00x10^-3	1.00x10^-11	11.00
	Strong	High Conc		1.00	1.00x10^-14	14.00
	Strong	Low Conc		1.00x10^-3	1.00x10^-11	11.00
		High Conc	Weaker Base	1.00×10^-5	1.00x10^-5	5.00
	Weak	riigii conc	Stronger Base	1.01×10^-14	9.90x10^-1	0
Base	vveak	Low Conc	Weaker Base	3.16x10^-8	3.16x10^-7	6.50
разе		Low Conc	Stronger Base	1.00×10^-11	1.00x10^-3	3.00
	Strong	High Conc		1.00×10^-14	1.00	0
	Strong	Low Conc		1.00×10^-11	1.00x10^-3	3.00

Competency Review

oprotons; hydrogen	1	~
neutrons; hydroger		
protons; hydroxide		
None of the above		
Γhe greater the nun solution.	mber of hydroxide ions in a solution, the more	_ the
acidic		
basic		~
offee and hand soa	and bases are found in everyday substances such ap.	43
		v
TrueFalse Based on the logarity		*
TrueFalse Based on the logarity	ар.	*
TrueFalse Based on the logarite bH of 4.	ар.	*
True False Based on the logarit pH of 4. 2 10	ар.	*
True False Based on the logarit pH of 4. 2 10	ap. ithm for pH, a pH of 2 is times more acidic tha	*
True False Based on the logarity PH of 4. 2 10 100 None of the above	ithm for pH, a pH of 2 is times more acidic tha	*
Based on the logarit pH of 4. 2 10 100	ithm for pH, a pH of 2 is times more acidic tha	*

A pH of	_ indicates an	acidic solution.			
3					~
0 7					
O 12					
O None o	of the above				
pH is a me	easure of the co	oncentration of _	ions in a	solution.	
water					
sodium	1				
hydrox	ide				
hydrog	en				~
In the pre	sence of an aci	d, water behave	s as a(n)	and accepts	the
acid; h	nated by the ac ydrogen nydroxide nydronium	d, water behave cid to create a _		_ and accepts	the ✓
proton do	ydrogen nydroxide nydronium ydronium s have a p	oH than strong a	ion.		~
proton do	ydrogen nydroxide nydronium ydronium s have a p ciate in water.	oH than strong a	ion.		~
proton do	ydrogen nydroxide nydronium ydronium s have a p ciate in water.	oH than strong a	ion.		~
proton do	ydrogen nydroxide nydronium ydronium s have a p ciate in water. partially fully partially	oH than strong a	ion.		~

In the presence of an acid, water will behave as a(n) ____. In the presence of a base, water will behave as a(n) ____. base; acid acid; base acid; acid base; base A(n) ____ reaction occurs when an acid and a base are present in the same solution. oxidation-reduction hydrolysis neutralization None of the above The reaction below is an example of the dissociation of an acid in water. $HCI(aq) + H₂O(I) \rightarrow H₃O⁺(aq) + CI⁻(aq)$ True False The pH of a solution with a 1.6×10^{-8} M concentration of hydronium ion is 0 7.80 -7.80 6.20 -6.20

Extension Questions

List the conjugate acid or conjugate base for each chemical.

- a. The acid HF
- b. The base KOH

c. The acid HNO₃

- d. The acid HCOOH
- e. The base CH₃NH₂

(SAMPLE ANSWER BELOW)

a. The acid HF: F

b. The base KOH: H_2O

c. The base NH_3 : NH_4 ⁺

d. The acid HNO₃: NO₃-

e. The acid HCOOH: COOH-

f. The base CH₃NH₂: CH₃NH₃⁺

Write the chemical equation of mixing ammonia (NH₃) with water. Identify all the components of the equation as acid, base, conjugate acid, and conjugate **base.** (SAMPLE ANSWER BELOW)

 $NH_3 + H_2O <=> NH_4^+ + OH^-$

ammonia: base

water: acid

ammonium ion: conjugate acid

hydroxide: conjugate base