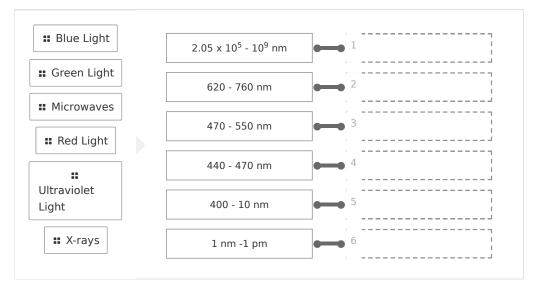
SI Chemistry - Full Discipline Demo

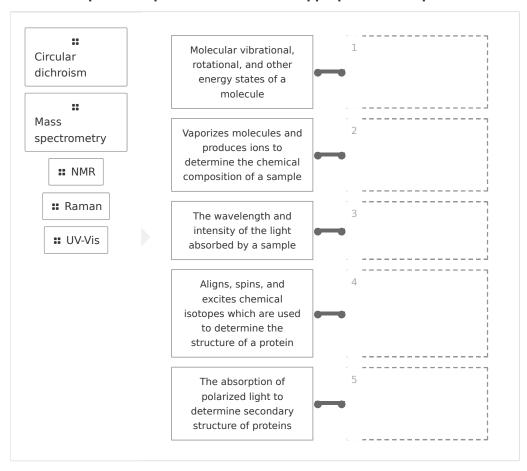
Beer's Law


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

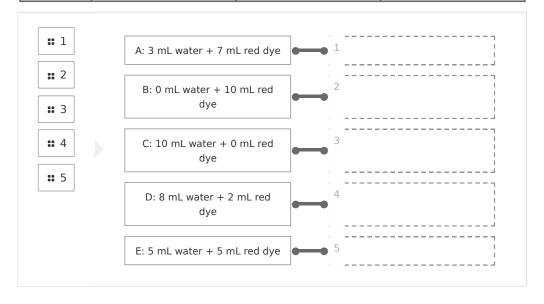
Test Your Knowledge


Match the electromagnetic sources with the correct wavelength.

Correct answers:

- 1 Microwaves 2 Red Light 3 Green Light 4 Blue Light
- 5 Ultraviolet Light 6 X-rays

Match the spectroscopic methods with the appropriate descriptions.



Correct answers:

- 1 Raman 2 Mass spectrometry 3 UV-Vis 4 NMR
- 5 Circular dichroism

A student prepares 5 calibration standards of a red dye by mixing a stock dye solution (M = 3.8×10^{-2} M) with water in the volumes presented in the table below. Order the solutions from lowest (1) to highest (5) absorbance.

Tube Label	Volume of Distilled Water (mL)	Volume of Standard Red Dye (mL)	Total Volume (mL)
А	3.0	7.0	10.0
В	0.0	10.0	10.0
С	10.0	0.0	10.0
D	8.0	2.0	10.0
Е	5.0	5.0	10.0

Correct answers:

1 4 2 5 3 1 4 2 5 3

Exploration

A solution is composed of ____ dissolved into a ____.

- a solute; solvent
- a solvent; solute
- water; solvent
- water; solute

spectrometry	✓
Chromatography	
Otopography	
geometry	
Absorbance is the measure of light intensity passed t	through a sample.
O True	
○ False	~
A is a type of spectrophotometer that measures through a sample at a specific wavelength.	the light transmitted
multimeter	
	~
microwave	
cuvette	
The constant(s) in Beer's law include	
absorbance	
the molar extinction coefficient	
the molar extinction coefficientthe path length	
	~

Exercise 1

Data Table 1: Concentration and Resistance (SAMPLE ANSWER BELOW)

Test	Concentration of Red Dye in	Resistance for W	Resistance for	Overall
Tube	Test Tube (M)	Blank (Ω)	Sample (Ω)	Resistance

В	0.000199	0.6	4.8	8.0
1	0.000179	0.6	4.4	7.3
2	0.000159	0.6	3.9	6.5
3	0.000139	0.6	3.4	5.6
4	0.000119	0.6	3.2	5.3
5	0.0000995	0.6	2.5	4.1
6	0.0000796	0.6	2.0	3.3
7	0.0000597	0.6	1.7	2.8
8	0.0000398	0.6	1.2	2.0
9	0.0000199	0.6	0.9	1.5
CD 1		0.6	4.4	7.3
CD 2		0.6	1.1	1.8
W	0	0.6	0.6	1.0

Data Table 2: Concentration and % Transmittance (SAMPLE ANSWER BELOW) $\,$

	LE ANSWER BELOW)					I
Test Tube	Concentration of Red Dye in Test Tube (M)	Resistance for W Blank (Ω)	Resistance for Sample (Ω)	Current for W Blank (A)	Current for Sample (A)	Percent Transmittance (%T)
В	0.000199	0.6	4.8	15	1.9	12.6
1	0.000179	0.6	4.4	15	2.0	13.3
2	0.000159	0.6	3.9	15	2.3	15.3
3	0.000139	0.6	3.4	15	2.6	17.3
4	0.000119	0.6	3.2	15	2.8	18.7
5	0.0000995	0.6	2.5	15	3.6	24.0
6	0.0000796	0.6	2.0	15	4.5	30.0
7	0.0000597	0.6	1.7	15	5.3	35.3
8	0.0000398	0.6	1.2	15	7.5	50.0
9	0.0000199	0.6	0.9	15	10	66.7
W	0	0.6	0.6	15	15	100
CD 1		0.6	4.4	15	2.0	13.3
CD 2		0.6	1.1	15	8.2	54.7

Data Table 3: Concentration and Absorbance (SAMPLE ANSWER BELOW)

Test Tube	Concentration of Red Dye in Test Tube (M)	Absorbance
В	0.000199	0.903
1	0.000179	0.865

2	0.000159	0.813
3	0.000139	0.753
4	0.000119	0.727
5	0.0000995	0.619
6	0.0000796	0.522
7	0.0000597	0.452
8	0.0000398	0.301
9	0.0000199	0.176
W	0	0
CD1	0.000169	0.865
CD2	0.000324	0.263

Exercise 2

Describe possible sources of error in this experiment.

There are multiple possible sources of error in this experiment, including: the rounding of
significant figures of the concentration, the measurement of the samples with the graduated
cylinder, the drift of the multimeter, the optical matching of the test tubes, and incident light
present in the colorimeter

Create a Beer's law plot and best fit line using the data in Table 2. Upload an image of the graph into Graph 4. Use the following data:

Questions 2 - 5 are based upon the following scenario:

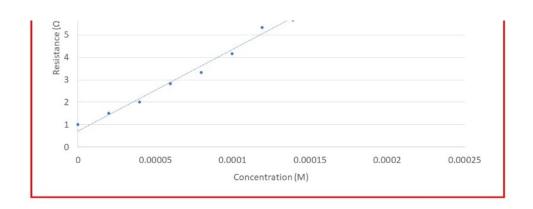
A testing laboratory has been hired by a company called "Drug Company Q" to analyze a series of over-the-counter drugs that the company produces. In all of these over-the-counter drugs, the active ingredient is called "Active Ingredient M." The laboratory technician collected the data from samples with known concentrations of Active Ingredient M. The data is shown below in Table 2.

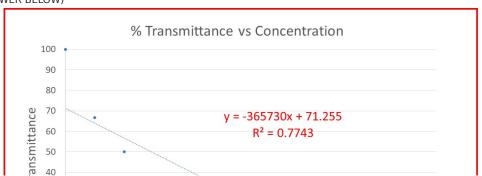
Table 2. Known Concentrations of Active Ingredient M Drug

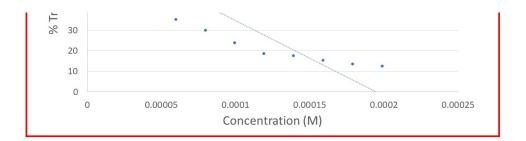
Sample Identification Code	Sample Concentration (M)	Absorbance
Q5000	4.00×10^{-4}	0.750
Q5001	3.20 x 10 ⁻⁴	0.602
Q5002	2.40 x 10 ⁻⁴	0.447
Q5003	1.60 x 10 ⁻⁴	0.299
Q5004	8.00 x 10 ⁻⁵	0.150

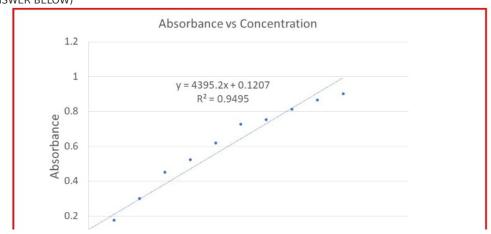
The technician also collected absorbance readings for 5 over-the-counter drugs for review. The data collected for the 5 over-the-counter drugs is shown in Table 3.

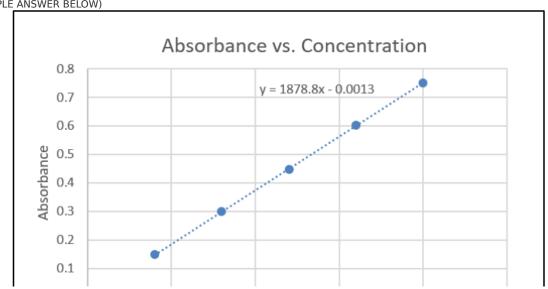
Table 3. Absorbance Data for Over-the-counter Drugs


Sample Identification Code	Absorbance
M21050-1	0.359
M21050-2	0.356
M21050-3	0.339
M21050-4	0.376
M21050-5	0.522


Use the Beer's law plot and best fit line to determine the concentrations for samples: M21050-1, M21050-2, M21050-3, M21050-4, M21050-5. The concentration for M21050-1 is 1.92×10^{-4} M. The concentration for M21050-2 = 1.90×10^{-4} M. The concentration for M21050-3 = $1.81 \times 10^{-4} M$. The concentration for M21050-4 = $2.01 \times 10^{-4} M$, and the concentration for M21050-5 = $2.79 \times 10^{-4} M$. The company reported that sample M21050-2 has an M concentration of 0.0003 M. Assuming that the results in Question 3 are 100% accurate and without error, is the company's statement accurate? What is the percent error between the reported concentration and the concentration calculated in Ouestion 3? Assuming that the company reported that M21050-2 has an M concentration of 0.0003 M, the company is not providing accurate data, as concentration for $M21050-2 = 1.90 \times 10^{-4}$. % error = $(0.000300 \text{ M} - 0.000190 \text{ M})/0.000190 \text{ M} \times 100\% = 57.9\%$ By law, Drug Company Q must have an M concentration between 2.85 x 10^{-4} M and 3.15 x 10^{-1} ⁴ M. Do all samples analyzed meet the legal requirements? Use the information from Question 3 to explain your answer. All of the analyzed samples have concentrations that are too low to meet legal requirements. Graph 1: Resistance vs. Concentration (SAMPLE ANSWER BELOW) Resistance vs Concentration 9 y = 36349x + 0.7199 $R^2 = 0.9943$ 8 7


6


Graph 2: % Transmittance vs. Concentration (SAMPLE ANSWER BELOW)

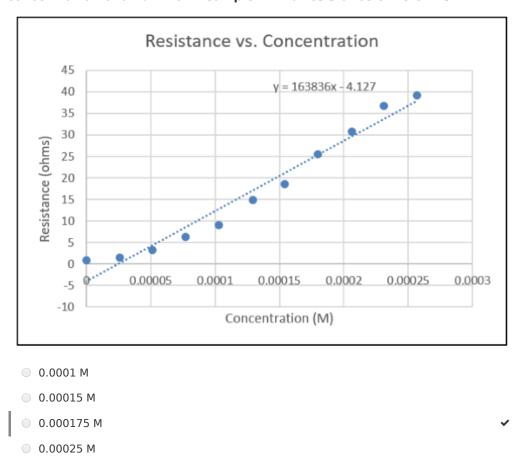

Graph 3: Absorbance vs. Concentration (SAMPLE ANSWER BELOW)

Graph 4: Exercise Question 2 (SAMPLE ANSWER BELOW)

0 0.0001 0.0002 0.0003 0.0004 0.0005 Concentration (M)

Competency Review

Water is the most universal	
solution	
solute	
○ solvent ✓	
Determining the components and concentrations of the solute in a solution is an uncommon task of chemists.	
True	
○ False ✓	


atoms and molecules.	tn
○ True	✓
○ False	
The visible region of the spectrum is located in the wavelength range between 400 nm and 700 nm.	
○ True	✓
○ False	
In UV-Vis spectroscopy, the intensity of the light after it passes through sample is referred to as	the
 absorbance 	
transmittance	✓
ultraviolet	
 electromagnetic 	
Beer's law mathematically expresses the relationship between and sample	
transmittance; concentration	
absorbance; concentration	✓
absorbance; transmittance	
 concentration; mass 	
A Beer's law plot is a graph showing the linear relationship between absorbance and concentration.	
○ True	✓
□ False	

What information was used in this e concentrations of colorimeter samp	
Initial concentration of solution	
Initial volume of solution	
Final volume of solution	
All of the above	•
A multimeter measures light intensi	ity as electrical resistance, which
A multimeter measures light intensi unctions as in a Beer's law plo	-
_	-
unctions as in a Beer's law plo	-
unctions as in a Beer's law plo transmittance	ot.

Use the scatter plot and associated line of best fit to determine the concentration of an unknown sample with a resistance of 25 ohms.

Extension Questions

At an environmental testing lab, a lab technician calculated the known concentration of the calibrating solution three times too high. How will this affect the results of the samples run using this calibration solution? What would be the possible consequences of reporting these results? (SAMPLE ANSWER BELOW)

The sample concentrations will be recorded too low. This will result in test results that give falsely low numbers. The client who receives these results may think his samples are at a safe concentration when they are not