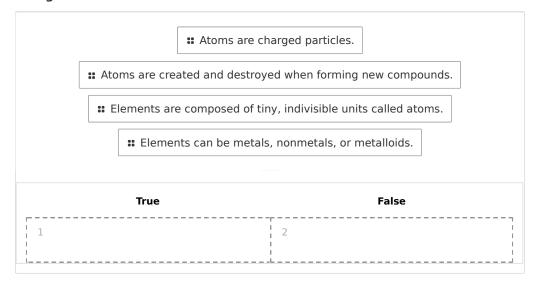
SI Chemistry - Full Discipline Demo

Atoms, Isotopes, and Atomic Mass


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

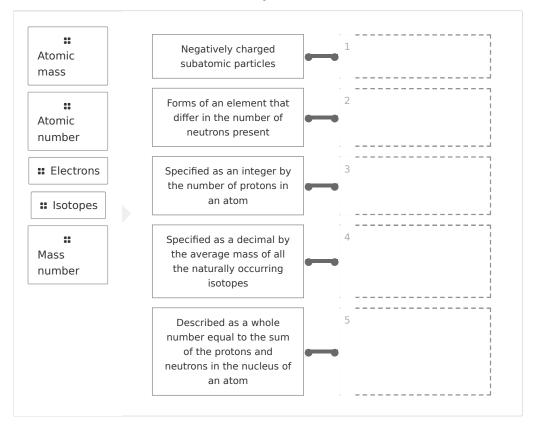
Instructor Sales SI Demo

Test Your Knowledge

Categorize each statement as true or false.

Correct answers:

1 Elements are composed of tiny, indivisible units called atoms.


Elements can be metals, nonmetals, or metalloids.

2 Atoms are created and destroyed when forming new compounds.

Atoms are charged particles.

Match each term with the best description.

Correct answers:

- 1 Electrons 2 Isotopes 3 Atomic number 4 Atomic mass
- 5 Mass number

Exploration

Elements in each group of the periodic table have similar ____.

- atomic masses
- properties
- symbols
- All of the above

Dalton's theory states that elements are made up of tiny units called	
atoms	~
compounds	
○ isotopes	
molecules	
Atoms consist of negatively charged and positively charged	
 electrons, neutrons 	
 electrons, protons 	~
protons, electrons	
protons, neutrons	
electronsisotopesneutronsprotons	~
Exercise 1 What are isotopes? How do isotopes of a given element differ? How are isotopes of element similar?	f a given
Isotopes are forms of an element that contain the same number or protons, but contain different numbers of neutrons, and thus have different atomic masses. Isotopes have the same atomic number (# of protons) and many of the same chemical properties.	

Explain t	he difference between mass number and atomic mass.
Т	The mass number is the number of protons and neutrons that make up an atom. The atomic mass is the average mass of all the isotopes of an element. The atomic mass is weighted by the natural abundance of each isotope.
How man	y protons are in the nucleus of a nitrogen-15 isotope? How many neutrons?
7 protons	; 8 neutrons
listed in	our calculated atomic masses of oxygen and sulfur compare to the atomic masses the period table: oxygen = 15.999 amu, sulfur = 32.065 amu? If your answers explain where the error may have been incurred.
p	student answers will vary. Both calculated atomic masses are within 0.001 of bublished values which vary by this degree in different versions of the periodic able. Otherwise, differences could be due to rounding or calculation errors.
	as only two naturally occurring isotopes, copper-63 and copper-65. Use the lass of copper from the <u>periodic table</u> to determine which must be the most t.
	The atomic mass of copper is given as 63.546, which is closer to 63 than 65. This ells us that copper-63 is the more abundant isotope of copper.

Data Table 1: Isotope Information (SAMPLE ANSWER BELOW)

(SAMILE ANSWER BELOW)	Isotope A	Isotope B	Isotope C
Number of Protons	6	6	6
Number of Neutrons	6	7	8
Atomic Number	6	6	6
Mass Number	12	13	14
Isotope Name	Carbon-12	Carbon-13	Carbon-14

Photo 1: Isotope B Drawing (SAMPLE ANSWER BELOW)

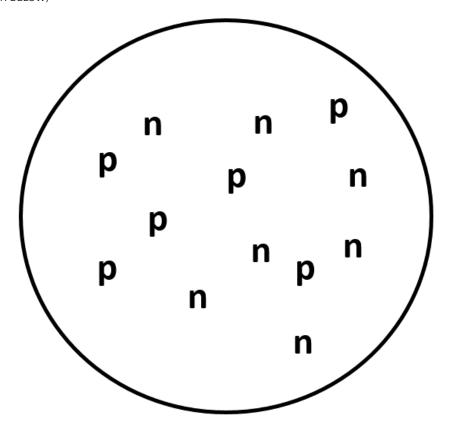
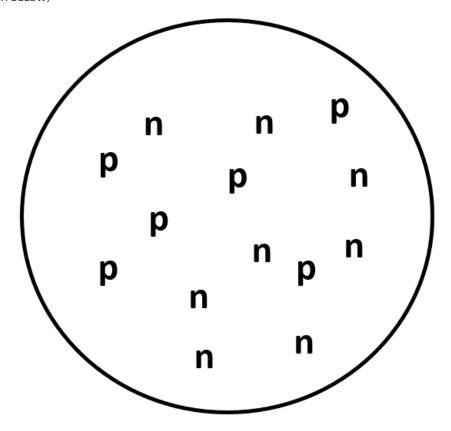



Photo 2: Isotope C Drawing (SAMPLE ANSWER BELOW)

Data Table 2: Isotope and Atomic Masses for Oxygen and Sulfur $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$

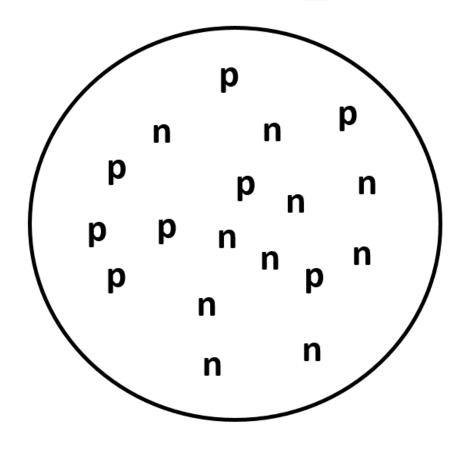
(8) (1) 11 22 7 (1)	NOVER BELOW)			
Element	Naturally Occurring Isotope	Natural Abundance of Isotope (%)	Mass of Isotope (amu)	Calculated Mass of Element (amu)
	Oxygen-16	99.757	15.994915	
Oxygen	Oxygen-17	0.038	16.999132	15.999
	Oxygen-18	0.205	17.999160	
	Sulfur-32	94.99	31.972071	
Sulfur	Sulfur-33	0.75	32.971459	32.065
Sullui	Sulfur-34	4.25	33.967867	32.003
	Sulfur-36	0.01	35.967081	

Photo 3: Atomic Mass Calculations (SAMPLE ANSWER BELOW)

O = 15.999 amu = $\frac{[(15.994915 \text{ amu x } 99.757 \%) + (16.999132 \text{ amu x } 0.038 \%) + (17.999160 \text{ amu x } 0.205 \%)]}{100\%}$

 $S = 32.065 \ amu = \frac{[(31.972071 \ amu \ x \ 94.99 \ \%) + (32.971459 \ amu \ x \ 0.75 \ \%) + (33.967867 \ amu \ x \ 4.25 \ \%) + (35.967081 \ amu \ x \ 0.01 \ \%)]}{100\%}$

Competency Review


Elements are substances consisting of atoms that have the same number protons.	er of
O True	~
○ False	
Electrons are protons and neutrons.	
larger than	
o smaller than	✓
the same size as	
All of the above	
Isotopes of an element contain different numbers of	
electrons	
o neutrons	~
All of the above	

The atomic mass of an element is the average mass of all the naturally occurring isotopes.

TrueFalse

The isotope diagram illustrates an atomic number of _____.

2810

0 18

1 amu	
○ 3 amu	
○ 4 amu	~
O 7 amu	
Chlorine has an atomic mass of 35.453 amu and 2 na	
Chlorine has an atomic mass of 35.453 amu and 2 na isotopes, Cl-35 and Cl-37. Based on atomic mass Cl-3 37.	
isotopes, Cl-35 and Cl-37. Based on atomic mass Cl-3	
isotopes, CI-35 and CI-37. Based on atomic mass CI-3 37.	

Extension Questions

Lithium exists as 2 isotopes. Research each isotope and include the relative abundance, mass number, atomic mass, and noteworthy uses of each. Cite your reference in the answer. (SAMPLE ANSWER BELOW)

Li-6 has a mass number of 6, atomic mass of 6.015 amu and natural abundance of 7.59%. It is used in thermonuclear weapons and biochemical research. Li-7 has a mass number of 7, atomic mass of 7.016, and relative abundance of 92.41%. It is used to control the pH level of coolant in pressurized water reactors and for the production of medical research radioisotope Be-7.

