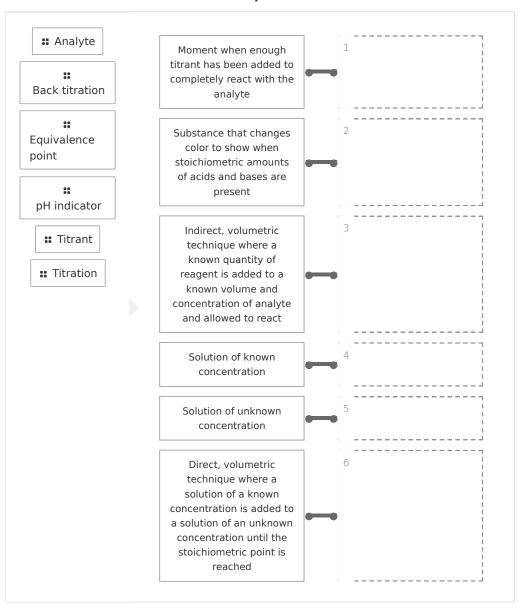
SI Chemistry - Full Discipline Demo

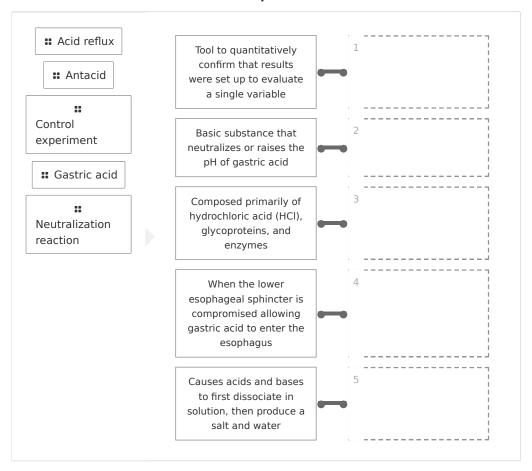
Antacid Analysis and Titration

Final Report - Answer Guide


InstitutionScience Interactive UniversitySessionSI Chemistry - Full Discipline DemoCourseSI Chemistry - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge


Match each term with the best description.

Correct answers:

- 1 Equivalence point 2 pH indicator 3 Back titration 4 Titrant
- 5 Analyte 6 Titration

Match each term with the best description.

Correct answers:

- 1 Control experiment 2 Antacid 3 Gastric acid 4 Acid reflux
- 5 Neutralization reaction

Identify the color of the solution at the different points throughout a titration between an antacid tablet and NaOH if phenolpthalein is used as the indicator.

# Beaker contains cr	rushed antacid tablet, water, and excess HCI
Beaker contains en	ashed aheada cashet, water, and excess her
	# Equivalence point
Started adding NaOH, b	ut not enough to react with all of the acid presen
Started adding NaOH, b	ut not enough to react with all of the acid presen
Started adding NaOH, b	ut not enough to react with all of the acid presen

Correct answers:

- Started adding NaOH, but not enough to react with all of the acid present Beaker contains crushed antacid tablet, water, and excess HCl
- Added 5 mL of NaOH past the equivalence point
 Equivalence point

Exploration

The duodenal sphincter is the internal mechanism to allow food to enter the stomach and to prevent gastric acid from entering into the esophagus.

	True		
0	False		•

Gastric acid is produced and secreted by specialized glands in the stomach, where it functions to break down the food we consume into smaller nutrient particles so they can be absorbed by the small intestine.

O True	е		•
O Fals	se		

In a healthy digestive system, the gastric acid remains in the st	omach.
○ True	~
○ False	
Phenolphthalein is a pH indicator that is in the presence of acids.	f strong
o pink	
o colorless	~
o yellow	
white	
A is an indirect, quantitative volumetric technique where a quantity of reagent is added to a known volume and concentrate analyte, and allowed to react.	
quantity of reagent is added to a known volume and concentrat analyte, and allowed to react. titration	
quantity of reagent is added to a known volume and concentrat analyte, and allowed to react.	
quantity of reagent is added to a known volume and concentrate analyte, and allowed to react. titration equivalence point	ion of
quantity of reagent is added to a known volume and concentrate analyte, and allowed to react. titration equivalence point back titration	ion of ✓
quantity of reagent is added to a known volume and concentrate analyte, and allowed to react. titration equivalence point back titration analyte If the initial and final amount of HCI involved in a reaction with	ion of ✓
quantity of reagent is added to a known volume and concentrate analyte, and allowed to react. titration equivalence point back titration analyte If the initial and final amount of HCl involved in a reaction with known, then the may be calculated.	ion of ✓
quantity of reagent is added to a known volume and concentrate analyte, and allowed to react. titration equivalence point back titration analyte If the initial and final amount of HCl involved in a reaction with known, then the may be calculated. amount of HCl neutralized by the antacid	ion of ✓

Exercise 1

If an antacid tablet weighed 1.6 grams, how many moles of gastric acid (HCI) would it neutralize? Use the results obtained in Data Tables 1 and 2 to explain and quantify your answer.
Using the data in Data Tables 1 and 2, each gram of the antacid tablet neutralized 0.28 grams of HCl. If an antacid tablet weighed 1.60 grams, it would neutralize 0.45 grams of HCl. Converting this to moles, 1.60 grams of the antacid tablet would neutralize 0.012 moles of HCl.
If you performed this experiment with a titrant of 0.5 M NaOH, would you expect your results in Data Table 2 to change or stay the same? Explain your answer.
If the experiment were performed with 0.5M NaOH instead of 1.0M NaOH, the results in Data Table 2 would not change. As the results in Data Table 2 are based on mol of NaOH and HCl, a lower concentration of NaOH would result in a higher volume of NaOH needed to reach stoichiometric quantities, but the overall amount of moles required of NaOH would not change. For example: 20 mL of 1.0M NaOH contains the same quantity of moles as 40 mL of 0.5M NaOH.
The reaction that occurred when the antacid mixed with the HCI resulted in an additional product (besides a salt and water). Did you see evidence of this product? Describe the experimental evidence you witnessed that supports the formation of the additional product.
The reaction that occurred with the antacid mixed with the HCl produced $CO_2(g)$ in addition to the salt and water. There was evidence of this product when performing the experiment as the addition of antacid to HCl resulting in a fizzing bubbling reaction, which was the CO_2 gas production and subsequent release into the atmosphere.

Data Table 1: Antacid Neutralization Data (SAMPLE ANSWER BELOW)

	Trial 1	Trial 2	Average
Mass of Crushed Antacid (g)	0.5	0.5	0.5
Concentration of HCI (M)	1.0	1.0	1.0
Volume HCI (mL)	5.0	5.0	5.0

Concentration of NaOH (M)	1.0	1.0	1.0
Initial NaOH Volume (mL)	9.0	8.0	
Final NaOH Volume (mL)	8.0	6.8	
Total Volume of NaOH Used (mL)	1.0	1.2	1.1

Data Table 2: Experimental Results (SAMPLE ANSWER BELOW)

HCl available for neutralization (g):	0.18
NaOH required to reach stoichiometric point (mol):	0.0011
HCI neutralized by antacid (g):	0.14
HCI neutralized per gram of antacid (g):	0.28

Exercise 2

Did the control experiment verify or refute the results from	Exercise 1? Use your results from
Exercises 1 and 2 to validate your answer.	

Why is it important to perform multip	ple trials	of ex	(periments?
---------------------------------------	------------	-------	-------------

It is important to perform multiple trials of experiments as there is always an opportunity for error. The more trials that are performed giving similarly accurate and precise results, the more likely it is that the experiment is resulting in reproducible data, which allows it to be verified as a successful experimental design and valid results/conclusions.

acid than the antacid tablet investigated in this experiment, how would you test this claim?
If a commercial was aired suggesting a new antacid was able to neutralize 25 times more acid

If a commercial was aired suggesting a new antacid was able to neutralize 25 times more acid than the antacid tablet investigated in this experiment, the same experiment would be performed, using the new antacid in place of the antacid tablet already used in this experiment. However, more HCl would be needed than used in this experiment so that there was enough to back titrate due to the potency of this new antacid. The amount of acid neutralized, gram per gram, would then be compared to the original antacid tablet to see if the difference was, in fact, 25 times greater than for the original antacid.

Describe possible sources of error in both Exercise 1 and 2. Describe possible way to reduce this error in future experiments.

As with any experiment, there are a variety of possible sources of error, including: the accuracy of the scale weighing to only 0.1 grams, the accuracy of the titrator and graduated cylinder, a possible overshot of adding more NaOH than was needed to reach exact stoichiometric quantities, inconsistency in rounding numbers during calculations, having chemical concentrations that were not first standardized, etc. There are a variety of ways to reduce error in future experiments, including: using a scale, graduated cylinder, and titrator with higher degrees of precision, performing more than one experiment trial, standardizing chemical concentrations prior to use, etc.

Data Table 3: Control Experiment Data (SAMPLE ANSWER BELOW)

	Trial 1	Trial 2	Average
Concentration of HCI (M)	1.0	1.0	1.0
Volume HCI (mL)	5.0	5.0	5.0
Concentration of NaOH (M)	1.0	1.0	1.0
Initial NaOH Volume (mL)	9.4	8.0	
Final NaOH Volume (mL)	4.0	2.8	
Total Volume of NaOH Used (mL)	5.4	5.2	5.3

Data Table 4: Control Experiment Results (SAMPLE ANSWER BELOW)

NaOH needed to neutralize 5 mL of 1.0M of HCI (mol)	0.0053
HCI neutralized (g)	0.19

NaOH volume difference between back titratin and control (mL)	4.2
HCI neutralized by NaOH volume difference (g)	0.15

Competency Review

Acid reflux disease is caused by a compromised	
stomach lining	
esophageal muscle	
lower esophageal sphincter	✓
 small intestine 	
Acid reflux disease results in	
 inflammation and irritation of the esophageal lining 	~
 inflammation and irritation of the stomach lining 	
 gastric acid overproduction 	
gastric acid is contained in the stomach	
Commercial antacids contain a wide variety of basic substances as the active ingredient, including	ir
aluminum hydroxide (Al(OH)₃)	
magnesium hydroxide (Mg(OH) ₂)	
sodium bicarbonate (NaHCO₃)	
calcium carbonate (CaCO₃)	
All of the above	~

In a neutralization reaction, the acid and the base	
dissociate in solution, produce hydroxide (OH-) and hydrogen (H+) ions respectively, then react to produce a salt and water	
dissociate in solution, produce hydrogen (H+) and hydroxide (OH-) ions respectively, then react to produce a salt and water	~
react to produce a salt and water then dissociate in solution, producing hydrogen (H+) and hydroxide (OH-) ions respectively	
react to produce a salt and water then dissociate in solution, producing hydroxide (OH-) and hydrogen (H+) ions respectively	
A pH indicator is used in a titration to determine	
 when the equivalence point has been reached 	✓
 when a precipitate has formed 	
 when phenolphthalein is present 	
is a direct, quantitative, volumetric technique, where a solution of known concentration is added to a solution of an unknown concentration until the equivalence point is reached.	
known concentration is added to a solution of an unknown concentration	
known concentration is added to a solution of an unknown concentration until the equivalence point is reached.	
known concentration is added to a solution of an unknown concentration until the equivalence point is reached. A back titration	
known concentration is added to a solution of an unknown concentration until the equivalence point is reached. A back titration A titration	
known concentration is added to a solution of an unknown concentration until the equivalence point is reached. A back titration A titration A stoichiometric point	on ✓
known concentration is added to a solution of an unknown concentration until the equivalence point is reached. A back titration A titration A stoichiometric point A pH indicator test If you were to run a control experiment to confirm the results of a back	on ✓
known concentration is added to a solution of an unknown concentration until the equivalence point is reached. A back titration A titration A stoichiometric point A pH indicator test If you were to run a control experiment to confirm the results of a back titration, what would be removed from the experiment?	on ✓

When HCl is added to a carbonate-containing antacid a occurs.	
color change	
major temperature change	
fizzing reaction (formation of gas)	✓
 change in the state of matter of the HCI 	
When performing a titration, it is important to add NaOH to accurate identify the equivalence point.	ately
one mL at a time	
one drop at a time	✓
 before the addition of the antacid 	
 before the phenolphthalein 	
In a control experiment, to validate the amount of HCl neutralized by a antacid, identify the item that would not be present.	n
Antacid	✓
○ NaOH	
O HCI	
O Phenolphthalein	

Extension Questions

The manufacturers of Brand A and Brand C antacids both claim that their product neutralizes 50% more HCl (stomach acid) per gram of tablet than Brand B. A pharmaceutical scientist completed a titration for each manufactured brand of antacid and recorded the findings in the table below.

Measurements	Brand A	Brand B	Brand C
Mass Crushed Antacid (g)	1.0	1.0	1.0
Concentration HCl (M)	1.0	1.0	1.0
Volume HCl (mL)	10.0	10.0	10.0
Concentration NaOH (M)	1.0	1.0	1.0
Total Volume NaOH Used in Titration (mL)	4.1	5.2	1.1

Using the experimental titration data collected by the pharmaceutical scientist, calculate the grams of HCl neutralized by each antacid and the grams HCl neutralized per gram of each antacid. Show your work. Based on your calculations, are the claims of Brand A and

Brand C true? Explain your answer and identify any sources of error. Based on your calculations, which antacid should a consumer suffering from excessive heartburn purchase for relief? Explain your answer.

(SAMPLE ANSWER BELOW)

Brand A's calculations:

4.1 mL NaOH x (1 L/1,000 mL) x (1 mol/L) = 0.0041 mol NaOH to reach stoichiometric point 0.0041 mol NaOH x (1 mol HCl/1 mol NaOH) = 0.0041 mol HCl

10.0 mL HCl \times (1 L/1,000 mL) \times (1 mol HCl/L) \times (36.46 g HCl/mol) = 0.36 g HCl available for neutralization

0.0041 mol HCl x (36.46 g HCl/mol) = 0.15 g HCl neutralized by NaOH HCl neutralized by antacid = 0.36 g - 0.15 g = 0.21 g HCl/g tablet

Brand B's calculations:

5.2 mL NaOH x (1 L/1,000 mL) x (1 mol/L) = 0.0052 mol NaOH to reach stoichiometric point 0.0052 mol NaOH x (1 mol HCl/1 mol NaOH) = 0.0052 mol HCl

10.0 mL HCl x (1 L/1,000 mL) x (1 mol HCl/L) x (36.46 g HCl/mol) = 0.36 g HCl available for neutralization

0.0052 mol HCl x (36.46 g HCl/mol) = 0.19 g HCl neutralized by NaOH HCl neutralized by antacid = 0.36 g - 0.19 g = 0.17 g HCl/g tablet

Brand C's calculations:

1.1 mL NaOH x (1 L/1,000 mL) x (1 mol/L) = 0.0011 mol NaOH to reach stoichiometric point 0.0011 mol NaOH x (1 mol HCl/1 mol NaOH) = 0.0011 mol HCl

10.0 mL HCl x (1 L/1,000 mL) x (1 mol HCl/L) x (36.46 g HCl/mol) = 0.36 g HCl available for neutralization

 $0.0011 \text{ mol HCl} \times (36.46 \text{ g HCl/mol}) = 0.04 \text{ g HCl neutralized by NaOH}$ HCl neutralized by antacid = 0.36 g - 0.04 g = 0.32 g HCl/g tablet

50% more g HCl/g tablet for Brand B = 0.17 g + 0.17 g = 0.34 g HCl/g tablet

Both Brand A and Brand C provide better heartburn relief than Brand B; however, Brand C is the closest to being 50% better at neutralizing HCl than Brand B. Possible sources of error include: data for only one experimental trial for each brand, calibration errors with the titration equipment, and rounding inconsistencies.

The consumer should purchase Brand C antacid, as 0.32 g HCl/g tablet is neutralized, and this result is closer to the stated claim of 50% more HCl neutralization per gram of tablet than Brand B.

