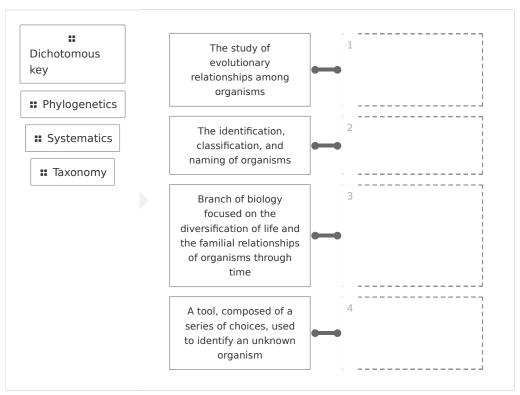
## SI Biology - Full Discipline Demo

## Taxonomy

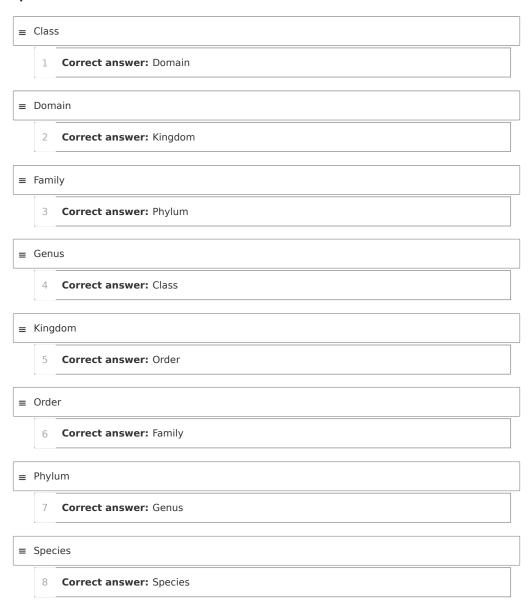

## Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Biology - Full Discipline DemoCourseSI Biology - Full Discipline Demo

**Instructor** Sales SI Demo

## Test Your Knowledge

### Match each term with the best description.




#### Correct answers:

1 Phylogenetics 2 Taxonomy 3 Systematics 4 Dichotomous key



Order the ranks of the taxonomic hierarchy from most broad to most specific.



## **Exploration**

Systematics uses taxonomy and phylogenetics to investigate biodiversity and familial relationships through time.

| O True  | • |
|---------|---|
| O False |   |



| cate          | is a ranking process that arranges organisms into a series of categories.                                                                                                          |            |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
|               | Binomial nomenclature                                                                                                                                                              |            |  |  |
| 0             | Taxonomic hierarchy                                                                                                                                                                | <b>~</b>   |  |  |
|               | Artiodactyla                                                                                                                                                                       |            |  |  |
|               | Phylogenetics                                                                                                                                                                      |            |  |  |
| The           | e choices within each step of a dichotomous key are formatted as a                                                                                                                 |            |  |  |
|               | duet                                                                                                                                                                               |            |  |  |
|               | codon                                                                                                                                                                              |            |  |  |
| C             | couplet                                                                                                                                                                            | <b>~</b>   |  |  |
|               | taxon                                                                                                                                                                              |            |  |  |
| identity orga | anisms? What evidence in Figure 4 supports this answer?                                                                                                                            |            |  |  |
|               |                                                                                                                                                                                    |            |  |  |
|               | were identified to the genus taxonomic rank. This is known because the nan<br>are capitalized and italicized.                                                                      | nes        |  |  |
| Based on yo   | tomous key, what characteristics set <i>Spirogyra</i> apart from other organur observations of the slides, describe at least one other characteristicant from the other organisms. |            |  |  |
|               |                                                                                                                                                                                    |            |  |  |
|               |                                                                                                                                                                                    |            |  |  |
|               | as thin and filamentous with visible spirals of chloroplasts. An additional feated the organism is multicellularity.                                                               | ature that |  |  |



### Why are taxonomy, phylogenetics, and systematics important to understanding biodiversity?

**Taxonomy** is the identification, classification, and naming of organisms. Modern genetic analyses have led to discoveries of evolutionary relationships between organisms and the field of **Phylogenetics**, the study of evolutionary history and relationships of organisms. Together, taxonomy and phylogenetics comprise **systematics**, the branch of biology focused on the diversification of life and the familial relationships of organisms through time. It estimated that only a fraction of life on Earth has been described: approximately 2 million species have been formally categorized and named and scientists estimate that more than 30 million unique organisms may exist on Earth.

Data Table 1: Organism Identification (SAMPLE ANSWER BELOW)

| (SAPILLE ANSWER BELOW) |               |               |  |  |
|------------------------|---------------|---------------|--|--|
| Slide                  | Organism Name | Magnification |  |  |
| Α                      | Spirogyra     | 150x          |  |  |
| В                      | Volvox        | 150x          |  |  |
| С                      | Euglena       | 600x          |  |  |
| D                      | Amoeba        | 600x          |  |  |
| E                      | Paramecium    | 600x          |  |  |





Photo 2: Slide B (SAMPLE ANSWER BELOW)

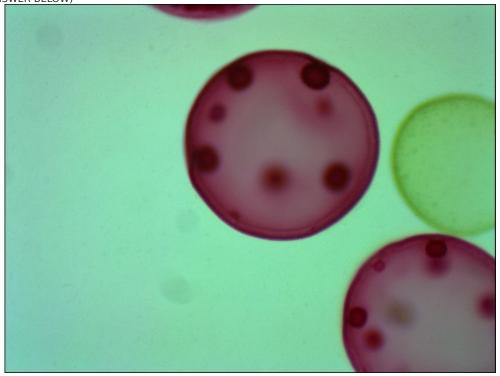



Photo 3: Slide C (SAMPLE ANSWER BELOW)



Photo 4: Slide D (SAMPLE ANSWER BELOW)

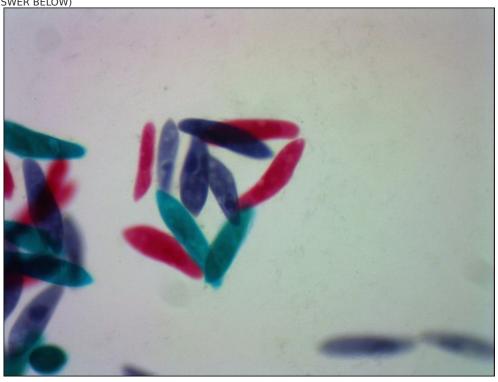




Photo 5: Slide E (SAMPLE ANSWER BELOW)



| Exercise 2                                                                                                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| List the features used to classify leaf types in the dichotomous key.                                                                                        |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
| 1. Leaf shape                                                                                                                                                |  |  |  |  |
| 2. Leaf type (compound or single)                                                                                                                            |  |  |  |  |
| 3. Leaf margin                                                                                                                                               |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
| List some characteristics that are shared among all of the leaves. Why are shared characteristics not included in dichotomous keys?                          |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |
| All leaves were green and had veins and stems. Shared characteristics not included dichotomous keys because couplet statements should be mutually exclusive. |  |  |  |  |
|                                                                                                                                                              |  |  |  |  |



### What is binomial nomenclature? Why is it preferred over the use of common names?

|  |  | 0 Word(s) |
|--|--|-----------|

# Data Table 2: Descriptions of Leaf Types (SAMPLE ANSWER BELOW)

| Leaf Type          | Description                                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oak                | Many rounded lobes                                                                                                                                    |
| Basswood           | Heart-shaped, ridged/toothed edge                                                                                                                     |
| Elm                | Oval shaped with a point, ridged/toothed edge                                                                                                         |
| Horse-<br>Chestnut | 5 leaves (leaflets) attach at a single point, edges are irregular                                                                                     |
| Maple              | Star-shaped leaf with 5 points                                                                                                                        |
| Locust             | Many oval-shaped leaves (leaflets) on a single branch; leaves have smooth edges                                                                       |
| Ash                | Many oval-shaped leaves (leaflets) on a single branch; leaves have regular, toothed edges; leaf tips are somewhat pointed                             |
| Pecan              | Many leaves (leaflets) on a single branch; leaves have regular, toothed edges, are somewhat slender, and are narrower through the middle than the ash |

# Data Table 3: Dichotomous Key to Leaves (SAMPLE ANSWER BELOW)

| Step | Description                                                             | Instruction (such as, "Go to 2") or Leaf<br>Name (for example, Maple) |
|------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 1.a. | Many leaflets attached to a single branch (compound)                    | Go to 2                                                               |
| 1.b. | Leaf is single (simple)                                                 | Go to 5                                                               |
| 2.a. | Leaves are palmate with 5 leaves attached at a single location          | Horse-Chestnut                                                        |
| 2.b. | Leaves are pinnately compound, spread along the length of the branch    | Go to 3                                                               |
| 3.a. | Leaflets are smooth and oval-shaped with rounded ends                   | Locust                                                                |
| 3.b. | Leaflets are ridged and somewhat oval, with pointed ends                | Go to 4                                                               |
| 4.a. | Leaflets are slender, their width being about ⅓of the length            | Pecan                                                                 |
| 4.b. | Leaflets are wider, their width being about $\frac{1}{2}$ of the length | Ash                                                                   |



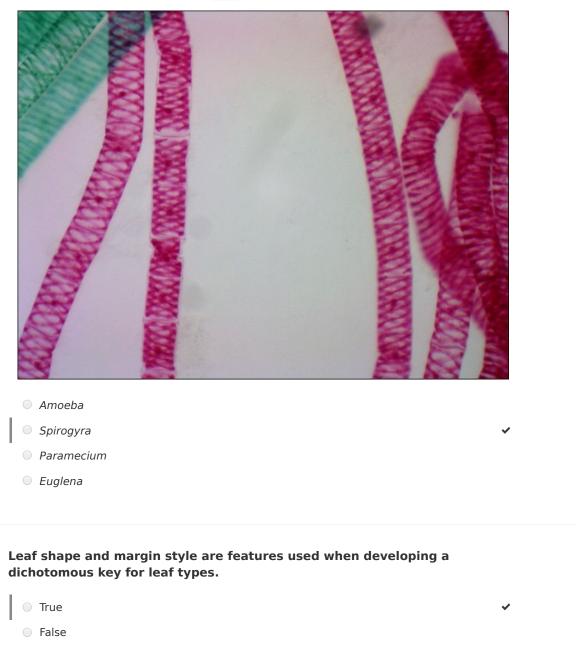
| 5.a.  | Leaf has rounded lobes                                  | Oak      |
|-------|---------------------------------------------------------|----------|
| 5.b.  | Leaf has a pointed terminus and does not have lobes     | Go to 6  |
| 6.a.  | Leaf is star-shaped with 5 pointed ends                 | Maple    |
| 6.b.  | Leaf is not star-shaped and has a singular, pointed end | Go to 7  |
| 7.a.  | Heart-shaped, ridged- toothed edge                      | Basswood |
| 7.b.  | Oval shaped with a point, ridged- toothed edge          | Elm      |
| 8.a.  |                                                         |          |
| 8.b.  |                                                         |          |
| 9.a.  |                                                         |          |
| 9.b.  |                                                         |          |
| 10.a. |                                                         |          |
| 10.b. |                                                         |          |

## **Competency Review**

Phylogenetics is the identification, classification, and naming of organisms.

| 1 | <ul><li>True</li><li>False</li></ul>           | <b>~</b> |
|---|------------------------------------------------|----------|
| _ | is the most specific taxonomic classification. |          |
| ( | Class                                          |          |
|   | <ul><li>Family</li></ul>                       |          |
|   | ○ Genus                                        |          |
|   | <ul><li>Species</li></ul>                      | ~        |

| belonging to the same class.                                                                                          |          |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----------|--|--|
| O True                                                                                                                | <b>~</b> |  |  |
| O False                                                                                                               |          |  |  |
| Each scientific name contains the to which the organism belongs.                                                      |          |  |  |
| <ul> <li>class and family</li> <li>genus and species</li> <li>kingdom and order</li> <li>domain and phylum</li> </ul> | <b>~</b> |  |  |
| The couplets of a dichotomous key are mutually exclusive choices.  True False                                         | <b>*</b> |  |  |




# The dichotomous key indicates that \_\_\_\_ is separated from *Paramecium* and *Euglena* by a hollow sphere body form.

|    |      | Dichotomous Key for Microorganisms                                                                                                                                                                      |            |
|----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. | a.   | Body is amorphous (without a defined shape) and can resemble a fried egg. Has "false feet" called pseudopods that act as extensions of the body. Nucleus visible.                                       | Amoebo     |
|    | b.   | Body has a well-defined, regular shape. A nucleus may or may not be visible.                                                                                                                            | Go to 2    |
| 2. | a.   | Filamentous body form with cells linked together in a long, thin strand. Chloroplasts are arranged in a spiral pattern.                                                                                 | Spirogyro  |
|    | b.   | Body shape is not a thin filament. Chloroplasts not present OR when present, the chloroplasts are not in a spiral arrangement.                                                                          | Go to 3    |
| 3. | a.   | Body is a hollow sphere that often contains other smaller spheres which are daughter colonies.                                                                                                          | Volvo      |
|    | b.   | Body is not a hollow sphere.                                                                                                                                                                            | Go to 4    |
| 4. | a.   | Oval or teardrop body shape. Body surrounded by cilia, short hair-like structures used for locomotion. Cilia may appear as fuzzy borders around the cell membrane of the organism.                      | Parameciun |
|    | b.   | Teardrop body shape. Body has a single flagellum, a long whip-like structure used for locomotion. Organisms also move by contracting and stretching their body and often appear contracted into a ball. | Euglend    |
|    | ) An | noeba                                                                                                                                                                                                   |            |
|    |      |                                                                                                                                                                                                         |            |
|    | ) Sp | irogyra                                                                                                                                                                                                 |            |
|    | Vo   | lvox                                                                                                                                                                                                    | ~          |
|    |      | loroplast                                                                                                                                                                                               |            |



The protist in the image below is \_\_\_\_.



## **Extension Questions**

Use the table to answer the following questions:

- a. What are the common and scientific names of all five organisms in the chart?
- b. Create two groups that include the organisms that are the closest related.
- c. At which taxonomic classification (kingdom, phylum, class, etc.) do all the organisms diverge into unique categories?



| Common<br>Name | European<br>corn borer | Mealworm<br>beetle | Snout moth  | Peppered<br>moth | Long nosed<br>weevil |
|----------------|------------------------|--------------------|-------------|------------------|----------------------|
| Kingdom        | Animalia               | Animalia           | Animalia    | Animalia         | Animalia             |
| Phylum         | Arthropoda             | Arthropoda         | Arthropoda  | Arthropoda       | Arthropoda           |
| Class          | Insecta                | Insecta            | Insecta     | Insecta          | Insecta              |
| Order          | Lepidoptera            | Coleoptera         | Lepidoptera | Lepidoptera      | Coleoptera           |
| Family         | Crambidae              | Tenebrionidae      | Pyraloidae  | Geometridae      | Belidae              |
| Genus          | Ostrininia             | Tenebrio           | Pyralis     | Biston           | Rhinotia             |
| Species        | nubialis               | molitor            | farinalis   | betularia        | hemistictus          |

#### (SAMPLE ANSWER BELOW)

- a. European corn borer *Ostrininia nubialis* Mealworm beetle *Tenebrio molitor* Snout moth *Pyralis farinalis* Peppered moth *Biston betularia* Long nosed weevil *Rhinotia hemistictus*
- b. The European corn borer (*Ostrininia nubialis*), snout moth (*Tenebrio molitor*), and peppered moth (*Biston betuaria*) can be grouped together because they have the same classification from kingdom through order (Lepidoptera). The mealworm beetle (*Tenobrio molitor*) and long nosed weevil (*Rhinotia hemistictus*) can be grouped together because they also share the same classification from kingdom through order (Coleoptera).
- c. All animals diverge from each other at the Family level: Crambidae, Tenebrionidae, Pyraloidae, Geometridae, and Belidae (respectively).

