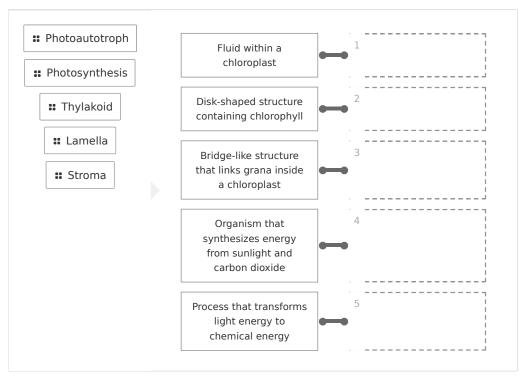
SI Biology - Full Discipline Demo

Photosynthesis-Digital

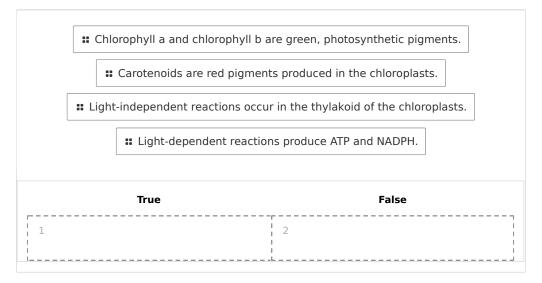

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Biology - Full Discipline DemoCourseSI Biology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.



Correct answers:

- 1 Stroma 2 Thylakoid 3 Lamella 4 Photoautotroph
- 5 Photosynthesis

Categorize each statement as True or False.

Correct answers:

- 1 Chlorophyll a and chlorophyll b are green, photosynthetic pigments.
- Light-dependent reactions produce ATP and NADPH.
- 2 Carotenoids are red pigments produced in the chloroplasts.

Light-independent reactions occur in the thylakoid of the chloroplasts.

Exploration

is released as a byproduct of photosynthesis.						
		Carbon dioxide				
		Oxygen	~			
		Water				
		Glucose				

	The of a chloroplast can be described as a stack of disk-like compartments.				
	○ granum	~			
	stroma				
	thylakoid				
	lamella				
	Carotenoids are yellow-orange accessory pigments produced in the plastids.				
	○ True	~			
	False				
	Light-independent reactions produce				
	water				
	oxygen				
	ATP				
	glucose	~			
	cise 1				
Descrik exercis	be the importance of adding sodium bicarbonate to the carbon treatments se.	in this			
bicarb	in dioxide rapidly diffuses out of water, becoming unavailable for photosynthesis bonate, which has carbon available in the form of bicarbonate ions (HCO_3^-) , filled a the experiment by donating carbon to the process of photosynthesis, as does C	the role of			

explain how a floating leaf disk could be used as an indicator of photosynthesis.				
Oxygen is produced as a product of photosynthesis, and the added gas caused the leaf disks to become more buoyant. Thus, when photosynthesis occurred at a great enough rate, the leaf disks floated.				
Describe the reactions that utilize the resources provided in these procedures to produce oxygen and glucose.				
The light-dependent reactions of photosynthesis use light energy and water to produce chemical energy, in the form of ADP and NADPH, and water. The chemical energy produced in the light-dependent reactions fuels the synthesis of glucose from ${\rm CO_2}$ that occurs in the light-independent reactions of photosynthesis.				
What do your results suggest about the importance of carbon and light for photosynthesis? Reference Data Table 1 and Graph 1 in your answer.				
Both light energy and a carbon source are required for photosynthesis. Only the treatment involving both the bicarbonate solution and bright light resulting in excess oxygen production and floating by the leaf disks as recorded in Data Table 1 and illustrated by Graph 1. All other treatments resulted in no floating disks, suggesting that only light or only carbon is insufficient for photosynthesis to occur. Furthermore, photosynthesis stopped in the bicarbonate and bright light treatment when it was placed in the dark, as evidenced by the disks sinking over time.				

Data Table 1: Photosynthesis in Light and Dark Environments (SAMPLE ANSWER BELOW)

(
Time (min)	dH ₂ O/Light (# of floating disks)	Carbon/Light (# of floating disks)	dH ₂ O/Dark (# of floating disks)	Carbon/Dark (# of floating disks)	
0	0	0	0	0	
2	0	1	0	0	
4	0	3	0	0	
6	0	6	0	0	

8	0	9	0	0
10	0	10	0	0
12	0	10	0	0
14	0	10	0	0
16	0	10	0	0
18	0	10	0	0
20	0	10	0	0
22	0	10	0	0
24	0	10	0	0
26	0	10	0	0
28	0	8	0	0
30	0	5	0	0
32	0	2	0	0
34	0	0	0	0
36	0	0	0	0
38	0	0	0	0
40	0	0	0	0

Graph 1: Time and Number of Floating Disks (SAMPLE ANSWER BELOW)

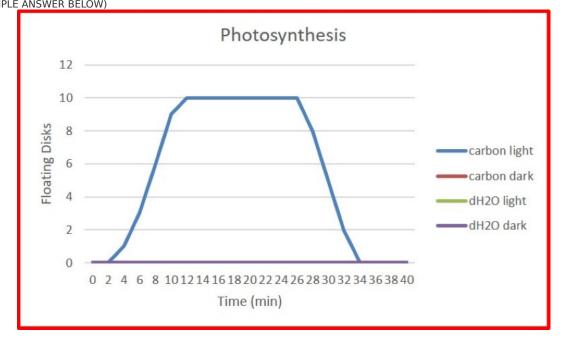


Photo 1: Time 40 Minute Results (SAMPLE ANSWER BELOW)

Exercise 2				
Explain how paper chromatography is useful for separating leaf pigment.				
Paper chromatography separates leaf pigment based on their molecules' solubility in the solvent and affinity for the paper. The molecules of each type of plant pigment vary in these properties resulting in their separation when traveling up the chromatography paper with the solvent.				
What is an Rf factor? How is this value used to identify unknown compounds?				
Rf factors are the ratio of the distance a molecule travels during chromatography to the distance the solvent travels (solvent front). The Rf value can be used to identify a molecule by comparing it to published values for molecules.				
Describe the function and appearance of the pigments separated from the spinach leaves in this exercise. Reference Data Table 2 and Photo 2 in your explanation.				

Chlorophylls a and b were the green pigments that separated in the center of the chromatography paper as referenced in Data Table 1 and illustrated in Photo 2. Chlorophylls function to capture light energy for photosynthesis and are located in the chloroplasts. Carotenoids (β -carotene and xanthophylls) appeared as yellow-orange pigments below and above the chlorophylls in Photo 2. These pigments function as accessory pigments by transmitting light energy to the chloroplasts where it is absorbed by chlorophyll.

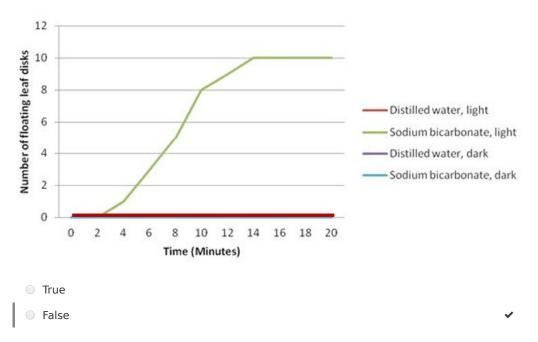
Data Table 2: Pigment Separation (SAMPLE ANSWER BELOW)

Separated Pigment #	Solvent front (mm)	Pigment distance (mm)	R _f value	Identification
1	22.0	21.6	0.98	B-carotene
2	22.0	13.0	0.59	Chlorophyll a
3	22.0	9.2	0.42	Chlorophyll b
4	22.0	3.2	0.15	Xanthophylls

Photo 2: Chromatography Results (SAMPLE ANSWER BELOW)

Competency Review During photosynthesis, light energy reacts with ____ to produce glucose. oxygen and carbon dioxide water and carbon dioxide nitrogen and oxygen carbon dioxide and anthocyanin The fluid that is located inside of a chloroplast is called the ____. chlorophyll granum thylakoid stroma are photosynthetic pigments containing magnesium and nitrogen. Chlorophylls Carotenoids Xanthophylls Anthocyanins

Photosynthetic processes occur in the stroma and thylakoid of the chloroplast.


Light-independent reactions synthesize glucose from ____ .

oxygen
water
carbon dioxide
nitrogen

Floating spinach leaf disks are confirmation that photosynthesis is occurring.

True
False

The graph illustrates that only light is necessary for photosynthesis to occur.

-	pigments migrate the greatest distance when separated by paper chromatography.					
	Chlorophyll a					
	Chlorophyll b					
	β-carotene	✓				
	 Xanthophyll 					

Extension Questions

The rate of photosynthesis in plants is influenced by factors such as water availability, light intensity, carbon dioxide concentration, and population density. Sam is a horticulturist working in a commercial greenhouse. Apply your knowledge gained from this lab to suggest how Sam should manipulate each of these factors in order to maximize photosynthesis?

- Water availability
- Light intensity
- Carbon dioxide concentration
- · Plant population density

(SAMPLE ANSWER BELOW)

Sam should maximize water availability, light intensity, and carbon dioxide concentrations. Lastly, Sam should minimize population density to avoiding shading of leaves.

