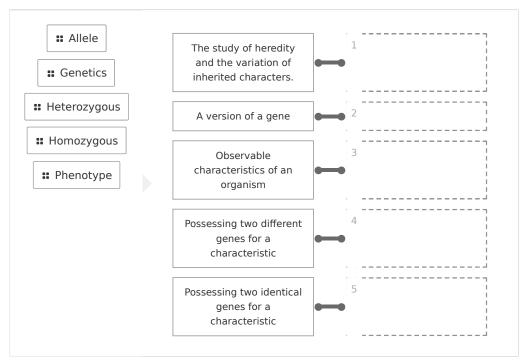
SI Biology - Full Discipline Demo

Mendelian Genetics - Digital


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Biology - Full Discipline DemoCourseSI Biology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

- 1 Genetics 2 Allele 3 Phenotype 4 Heterozygous
- 5 Homozygous

Identify each statement as true or false.

# A p-value is used	to determine which traits are dominant.
Mendel discovered the fundamer plants.	tal laws of inheritance through his work on pea
: Organisms with alternate for	ms of a gene will express the form that is recessive
:: Punnett squares diagram th	e possible genotypes and phenotypes of offspring.
True	False
True	False

Correct answers:

1

Mendel discovered the fundamental laws of inheritance through his work on pea plants.

Punnett squares diagram the possible genotypes and phenotypes of offspring.

2 A p-value is used to determine which traits are dominant.

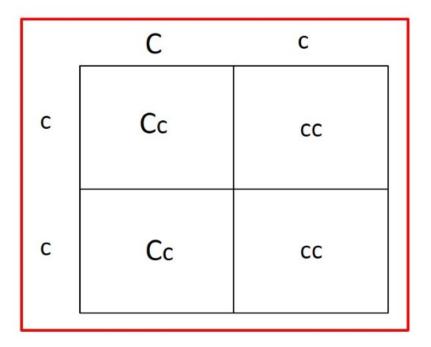
Organisms with alternate forms of a gene will express the form that is recessive.

Exploration

Alleles are different versions of a gene that are passed from parent to offspring.

True		•
False		

white flowering peas, the offspring produced colored flowers.	aing
pink	
o purple	✓
white	
white and purple	
The Law of states that offspring inherit one allele from each parent	: .
 Dominance 	
Independent Assortment	
 Segregation 	✓
Recessivity	
A Punnett square describing a monohybrid cross contains cells.	
○ two	
ofour	~
six	
eight	
The phenotypic ratio for the offspring of a dihybrid cross between two parents with heterozygous genotypes is 4:2:2:2:1:1:1.	
○ True	
○ False	✓
A chi-square test can be used to compare the predictions of a Punnett square to what is observed in a population.	
○ True	✓
False	


Exercise 1

Explain the difference between the terms genotype and phenotype.		
Genotype refers to the genetic makeup of an	organism, whereas phen	otype refers to the
observable characteristics of an organism. The individual.	he genotype determines t	he phenotype of an
The seeds in this exercise were produced ke recessive parent as described in step 4. List the homozygous recessive parent (cc).		
The homozygous recessive parent corcrosses: cc x cc, Cc x cc, and Cc x Cc.		by the following
Was the Punnett square created in this exe resulting from a cross between a homozyg and a heterozygous smooth-seed-producin recorded in Data Table 4 in your explanatio	ous recessive wrinkled- g millet plant? Referen	seed-producing millet plant
No, the Punnett square in Photo 1 predicted to fithe offspring would be wrinkled. The samp The difference was statistically significant products Table 4.	le contained 61 smooth s	eeds and 39 wrinkled seed.
Data Table 1: Millet Seed Genotypes ar (SAMPLE ANSWER BELOW)	nd Phenotypes	
	Genotype	Phenotype

	Genotype	Phenotype
Homozygous dominant	CC	smooth coat
Heterozygous	Сс	smooth coat
Homozygous recessive	сс	wrinkled coat

Photo 1 : Cross Producing Seeds in Kit (Cc x cc) (SAMPLE ANSWER BELOW)

Data Table 2: Expected Ratios (SAMPLE ANSWER BELOW)

Phenotypic ratio	1:1
Genotypic ratio	1:1
Offspring expected to be smooth (%)	50
Offspring expected to be wrinkled (%)	50

Data Table 3: Millet Seed Data

(SAMPLE ANSWER BELOW)

	Round Seeds	Wrinkled Seeds	Total
Observed number of individuals	61	39	100
Expected number of individuals	50	50	

Panel 1: Chi-square Calculation for Millet Seeds

(SAMPLE ANSWER BELOW)

$$x^2 = \frac{(61-50)^2}{50} + \frac{(39-50)^2}{50} = 4$$

Data Table 4: Millet Seed Chi-square Test

(SAMPLE ANSWER BELOW)

Degrees of Freedom	1
p-Value Range	0.05-0.025
Conclusion	Difference between expected and observed is statistically significant

Exercise 2

Was the Punnett square created in this exercise a good predictor of offspring phenotypes resulting from a dihybrid cross of heterozygous parents? Reference Photo 2 and Data Table 11 in your explanation.

Yes, the Punnett square in Photo 2 predicted a phenotypic ratio of 50%, 19%, 19%, and 6% for purple-smooth, purple-wrinkled, yellow-smooth, and yellow-wrinkled, respectively. The numbers of each phenotype in the sample were 297, 86, 85, and 25. The difference between the expected numbers and observed numbers of the phenotypes was not statistically significant producing a p-value range 0.500-0.050 as recorded in Data Table 11.

Would a cross between a homozygous purple-smooth parent (PPSS) and a parent that is heterozygous for both traits (PpSs) result in offspring that produced either yellow or wrinkled seeds? Explain your answer by listing the genotypes and phenotypes produced by the cross.

No, all offspring would produce purple, smooth seeds. The genotypes of the offspring would be: PPSS, PpSS, PPSS, and PpSs. An offspring would need to be homozygous recessive for either of the traits to produce yellow or wrinkled seeds.

Data Table 5: Kernel Alleles

(SAMPLE ANSWER BELOW)

	- ,	
Allele	Trait Description	Dominant/Recessive
Р	Purple color	Dominant
р	Yellow color	Recessive
S	Smooth texture	Dominant
S	Wrinkled texture	Recessive

Data Table 6: Kernel Phenotypes and Genotypes (SAMPLE ANSWER BELOW)

(SAME LE ANSWER BELOW)		
Phenotype	Possible Genotype (s)	Number of possible Genotypes
Purple-smooth	PPSS, PPSs, PpSs, PpSs	4
Yellow-smooth	ppSS, ppSs	2
Purple-wrinkled	PPss, Ppss	2
Yellow-wrinkled	ppss	1

Data Table 7: Genotypes of True-Breeding Corn (SAMPLE ANSWER BELOW)

True-Breeding Phenotypes	Genotype	Number of possible Genotypes
Corn that produces only purple-smooth kernels	PPSS	1
Corn that produces only yellow-smooth kernels	ppSS	1
Corn that produces only purple-wrinkled kernels	PPss	1
Corn that produces only yellow-wrinkled kernels	ppss	1

Data Table 8: Allelic Combinations for Axes (SAMPLE ANSWER BELOW)

Genotype	Allele Combinations for the Axis of a Punnett Square
Parent: PpSs	Combination 1: PS

Combination 2: Ps
Combination 3: pS
Combination 4: ps

Photo 2: Cross of Heterozygous Corn (PpSs x PpSs) (SAMPLE ANSWER BELOW)

		Parent 1			
F ₂ Generation		_PS_	_Ps_	_pS_	_ps_
	PS	PPSS Purple-smooth	PPSs Purple-smooth	PpSS Purple-smooth	PpSs Purple-smooth
Parent 2	_Ps_	PPSs Purple-smooth	PPss Purple- wrinkled	PpSs Purple-smooth	Ppss Purple-wrinkled
	ps	PpSS Purple-smooth	PpSs Purple-smooth	ppSS Yellow-smooth	ppSs Yellow-smooth
	ps	PpSs Purple-smooth	Ppss Purple- wrinkled	ppSs Yellow-smooth	ppss Yellow-wrinkled

Student Name Date

Data Table 9: Description of Corn Offspring

(SAMPLE ANSWER BELOW)

(SAMILEE ANSWER BELOW)	
Phenotypic ratio	9:3:3:1
Genotypic ratio	4:2:2:2:1:1:1:1
Offspring expected to be purple-smooth (%)	56.25%
Offspring expected to be purple-wrinkled (%)	18.75%
Offspring expected to be yellow-smooth (%)	18.75%
Offspring expected to be yellow-wrinkled (%)	6.25%

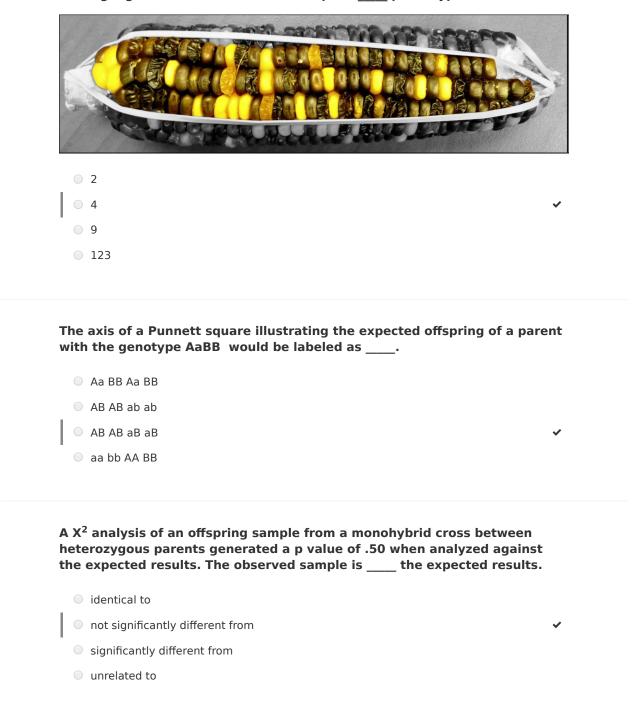
Data Table 10: Corn Offspring Data (SAMPLE ANSWER BELOW)

	Purple-smooth	Purple-wrinkled	Yellow-smooth	Yello
Expected Number of Offspring	278	92	92	31
Section A (Observed)	53	27	17	3
Section B (Observed)	93	21	25	12
Section C (Observed)	89	17	32	8
Section D (Observed)	62	21	11	2
Observed Number of Offspring (A + B + C + D)	297	86	85	25

$$x^2 = \frac{(297 - 278)^2}{278} + \frac{(86 - 92)^2}{92} + \frac{(85 - 92)^2}{92} + \frac{(25 - 31)^2}{31} = 3.38$$

Data Table 11: Corn Chi-square Test (SAMPLE ANSWER BELOW)

(SAPITE ANSWER DELOW)				
Degrees of Freedom	3			
p-Value Range	0.500-0.050			
Conclusion	p=0.500 – 0.050, therefore $p>0.05$. There is not a statistically significant difference between the expected and observed values.			


Competency Review

refers to the observable characteristics of an organism.	
○ Genotype	
 Genetics 	
Phenotype	~
Recessive	
The Law of states that the inheritance of one trait is not dependent the inheritance of another.	of
 Dominance 	
Independent Assortment	~
Segregation	
 Homozygous 	
Punnett squares are used to predict the genotypic and phenotypic ratios offspring.	in
○ True	~
○ False	
A Punnett square illustrating a dihybrid cross has cells.	
4	
○ 8	
O 16	~
O 32	
A significant X ² value implies that the difference found between the expected and observed data is probably not due to chance alone.	
○ True	~
False	

The highlighted area of the corn ear depicts ____ phenotypes.

Extension Questions

A plant collector locates a wild population of lilies composed of 75% spotted flowers and 25% solid colored flowers. The collector selects seeds from several of the spotted individuals and plants the seeds in their garden. The collector is surprised that 25% of the resulting lilies produced solid colored

flowers. Apply your knowledge of Mendelian genetics to explain why the collector did not produce only spotted flowering plants in their garden.

(SAMPLE ANSWER BELOW)

The sampled population exhibited a 3:1 phenotypic ratio of spotted flower plants to solid colored flower plants suggesting that the genotypic ratio of the population was 1:2:1 for the flower color allele, with the solid color being recessive. By selected seeds from only a few plants, the collector was likely selecting seeds from the heterozygous plants. When planted in the collector's garden, these seeds would result in plants with a 3:1 phenotypic ratio of spotted flowers to solid flowers.

