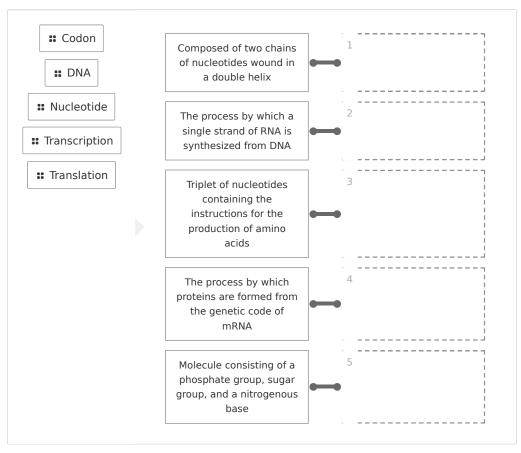
SI Biology - Full Discipline Demo

DNA, RNA, and Protein Synthesis


Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Biology - Full Discipline DemoCourseSI Biology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.

Correct answers:

1 DNA 2 Transcription 3 Codon 4 Translation 5 Nucleotide

Identify each statement as true or false

RNA polymerase binds to the template strand of the DNA molecule.

tRNA forms the small subunit of a ribosome.

Frameshift mutations occur when one nucleotide is substituted for another in DNA.

Some point mutations result in changes to translated polypeptides while other point mutations have no effect on translation.

False

True False

Correct answers:

1 RNA polymerase binds to the template strand of the DNA molecule.

Some point mutations result in changes to translated polypeptides while other point mutations have no effect on translation.

2 tRNA forms the small subunit of a ribosome.

Frameshift mutations occur when one nucleotide is substituted for another in $\ensuremath{\mathsf{DNA}}.$

Exploration

Four ____ form the structure of DNA.

amino acids

nucleotides

proteins

carbohydrates

Thymine is replaced with in RNA.	
adenine	
cytosine	
uracil	~
guanine	
A complete ribosome is formed during the step of translatio	n.
elongation	
o initiation	~
maximization	
termination	
A stop codon codes for the amino acid proline.	
True	
• False	~
Frameshift mutations result when one or more nucleotides are acremoved from DNA.	dded or
□ True	~
False	
ercise 1	
at is the relationship between codons, amino acids, and proteins? Inclueach term and reference your results Data Table 1 in your explanation.	
ne genetic code is composed of codons, triplets of nucleotides that contain in roduction of amino acids. Amino acids are organic compounds composed of a	

 $(\mathrm{NH_2})$, a central carbon, a carboxylic acid $(\mathrm{CO_2H})$ and a functional group (R). Proteins are composed of long, folded polypeptide chains of amino acids. The code provided in Data Table 1 consisted of 12 codons that coded for 11 amino acids plus a stop codon. After translation, the resulting polypeptide chain, containing 11 amino acids would then undergo reactions and folding to form a protein.

Describ	be the three steps of transcription. Reference the example provided in Data Table 1 in aswer.
strand the hy downs growin Transc mRNA mRNA	on begins when the enzyme RNA polymerase binds to a location on the DNA template called the promoter. RNA polymerase then separates the two strands of DNA by breaking drogen bonds between the base pairs. During elongation, RNA polymerase travels tream (3' to 5') along the DNA template strand adding free nucleotides to the 3' end of the IR RNA molecule. Termination occurs when the RNA polymerase reaches a stop codon. In ription ends and the new mRNA molecule detaches from the DNA. Transcription creates an copy of the DNA coding strand with uracil replacing thymine in the newly constructed. This is demonstrated in Data Table 1 as the recorded mRNA is identical the coding DNA except for the 10 T nucleotides being replaced by 10 U nucleotides.
Describ answer	e the three steps of translation. Reference the example in Data Table 1 in your
methic acid m form a position empty site the tRNA i site, he tRNA t UGA) i of the dissociundere proteir	initiation, the small subunit of a ribosome charged with a tRNA, and the amino acid onine (Met) attaches to mRNA and scans for the start codon AUG (which codes for the amino aethionine). Once the start codon is encountered, a large subunit joins the small subunit to complete ribosome. As a result of the initiation process, the methionine tRNA becomes used in the ribosomal P site. Elongation begins as a new tRNA plus amino acid enters the A site of the ribosome. If the anticodon matches the mRNA codon, the amino acid in the P en forms a peptide bond with the amino acid in the A site, releasing the amino acid from the n the P site and moving the empty tRNA into the E site. Simultaneously, the tRNA in the A olding the two peptide-bonded amino acids, then moves into the P site, signaling the next to bind to the mRNA in the A site. Elongation continues until the stop codon (UAA, UAG, or is encountered on the mRNA strand. During termination, the stop codon signals the release polypeptide chain from the ribosome. The two ribosome subunits and the mRNA then liate from one another, completing the translation process. The polypeptide chain then goes a series of steps including post-translational modifications and folding to become a n. Translation is illustrated in the results in Data Table 1 as the polypeptide chain consists of ino acids that were formed from the mRNA strand which contained both the start codon,

Data Table 1: Protein Synthesis

AUG, and stop codon UAA.

(SAMPLE ANSWER BELOW)

ATG ACC AAC AAG CGC AGT CGA TGT TAT TTC CTC TAA
TAC TGG TTG TTC GCG TCA GCT ACA ATA AAG GAG ATT
AUG ACC AAC AAG CGC AGU CGA UGU UAU UUC CUC UAA
met thr asn lys arg ser arg cys tyr phe leu

Exercise 2

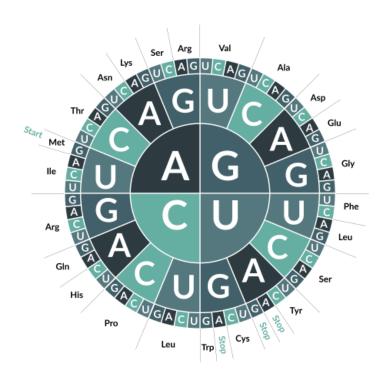
	the point mutation have on the sequenced polypeptide in this exercise? results recorded in Data Table 2 in your explanation.		
		0 Word(s)	
What effect did	the frameshift mutation have o	on the sequenced polypeptide in this exercise?	
Reference your	results recorded in Data Table	2 in your explanation.	
		0 / 10000 Word Limit	

DataTable 2: Mutations

(SAMPLE ANSWER BELOW)

(SAMPLE ANSWER BELOW)	
mRNA strand	AUG GAG GUC UUU AAG AGA CAU UUA GAU UAG
Translated polypeptide chain	Met Glu Val Phe Lys Arg His Leu Asp
mRNA point mutation	AUG GAG CUC UUU AAG AGA CAU UUA GAU UAG
Translated point mutation polypeptide	Met Glu Leu Phe Lys Arg His Leu Asp
mRNA frameshift mutation	AUG GAG UCU UUA AGA GAC AUU UAG AUU AG
Translated frameshift mutation polypeptide	Met Glu Ser Leu Arg Asp Ile

Competency Review



○ True	✓
○ False	
A is a triplet of nucleotides that forms the organisms.	e genetic code for all
polypeptide	
onitrogenous base	
o codon	✓
o ribosome	
replacing thymine in the newly constructed mi	RNA.
replacing thymine in the newly constructed mi	RNA.
template	RNA.
coding template initiation	re amino acids are connected
replacing thymine in the newly constructed miles of the coding template initiation termination The contains three binding locations where	re amino acids are connected
coding template initiation termination The contains three binding locations where to form a polypeptide chain during translation	re amino acids are connected

opromoter	
start codon	
initiator	
stop codon	•
mutations result DNA.	when one nucleotide is substituted for another in
OPolymerase	
O Point	•
- Frameshift	
Elongation	
The template DNA seque sequence.	ence below would be transcribed to 5' 3' mRNA
3' TAC TGG TTG TTC 5'	
GUU CUU CCU GAU	
ATG ACC AAC AAG	
ATO ACC AAC AAO	
GAA CAA CCA GTA	

The mRNA strand below codes for ____ amino acids. 5' AUG ACC AAC UAA 3'

The sequence below is an example of a frameshift mutation of sequence AUG GAG GUC UAG.

AUG GAG GGU CUA G

Extension Questions

Sickle cell anemia is a genetic disease resulting from a copying error for the DNA sequence that codes for Beta-hemoglobin, the molecule that assists red blood cells with transporting oxygen. The mutated mRNA sequence has the nucleotide uracil instead of adenine in the seventh codon as illustrated in the sequence below. Apply your knowledge of transcription, translation, and mutations to answer the following questions:

- a. Is sickle cell anemia created by a point or frameshift mutation?
- b. What are the coding and template strands of DNA that correspond to the provided mRNA sequence?

5' AUG GUG CAC CUG ACU CCU GUG GAG AAG 3'

(SAMPLE ANSWER BELOW)

- a. The disease is caused by a point mutation because a single nucleotide is substituted within a codon.
- b. Corresponding coding DNA sequence 5' ATG GTG CAC CTG ACT CCT GTG GAG AAG 3'. Corresponding template DNA sequence 3' TAC CAC GTG GAC TGA GGA CAC CTC TTC 5'

