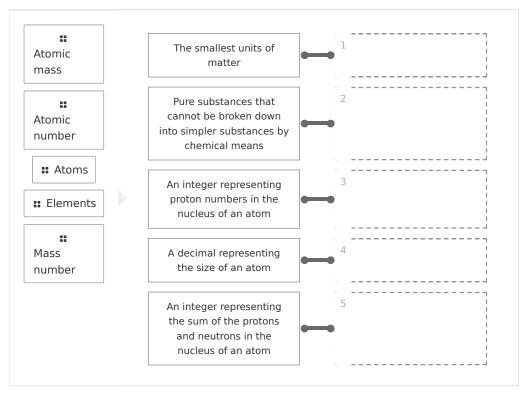
SI Biology - Full Discipline Demo

Chemistry Fundamentals

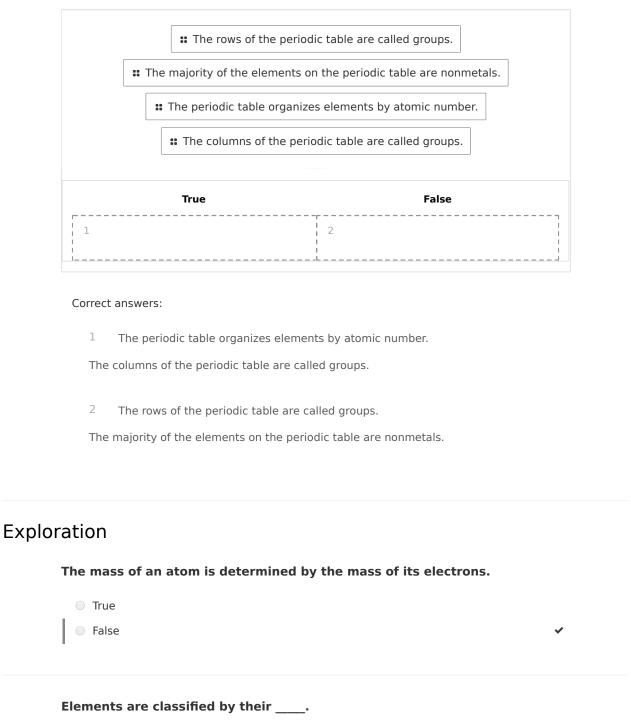

Final Report - Answer Guide

InstitutionScience Interactive UniversitySessionSI Biology - Full Discipline DemoCourseSI Biology - Full Discipline Demo

Instructor Sales SI Demo

Test Your Knowledge

Match each term with the best description.



Correct answers:

- 1 Atoms 2 Elements 3 Atomic number 4 Atomic mass
- 5 Mass number

Categorize each statement as true or false.

atomic numberatomic mass

oxidation stateAll of the above

	alkali metals
	noble gases
	 transition metals
	halogens
	Atoms of an element may differ in mass, but they always have the same number of
	electrons
	○ isotopes
	neutrons
	○ protons ✓
	Isotopes are forms of an element that contain the same number or protons, but contain different numbers of neutrons, and thus have different atomic masses. Each isotope of carbon is named after the number of particles (mass number) in their
pa	contain different numbers of neutrons, and thus have different atomic masses. Each isotope of carbon is named after the number of particles (mass number) in their
npa	contain different numbers of neutrons, and thus have different atomic masses. Each isotope of carbon is named after the number of particles (mass number) in their nuclei: 12 for carbon-12, 13 for carbon-13, and 14 for carbon-14. O your calculated atomic masses of oxygen and sulfur recorded in Data Table 2 re to the atomic masses listed in the period table: oxygen = 15.999 amu, sulfur =

Data Table 1: Isotope Information

(SAMPLE ANSWER BELOW)

(8.11.12.11.10.11.11.12.11.1)				
	Isotope A	Isotope B	Isotope C	
Number of Protons	6	6	6	
Number of Neutrons	6	7	8	
Atomic Number	6	6	6	
Mass Number	12	13	14	
Isotope Name	Carbon-12	Carbon-13	Carbon-14	

Photo 1: Isotope B Diagram (SAMPLE ANSWER BELOW)

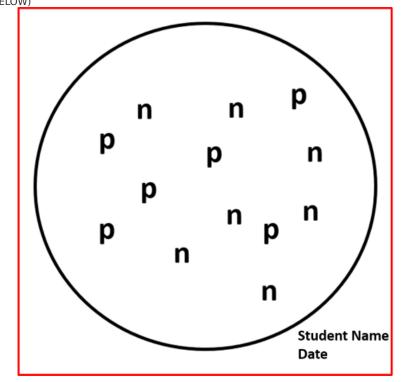
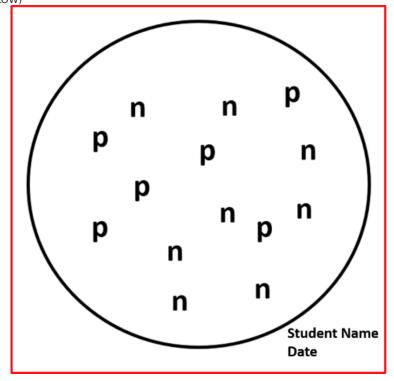



Photo 2: Isotope C Diagram (SAMPLE ANSWER BELOW)

Data Table 2: Isotope and Atomic Masses for Oxygen and Sulfur $({\sf SAMPLE}\ {\sf ANSWER}\ {\sf BELOW})$

Element	Naturally Occurring Isotope	Natural Abundance of Isotope (%)	Mass of Isotope (amu)	Calculated Mass of Element (amu)	
	Oxygen-16	99.757	15.994915		
Oxygen	Oxygen-17	0.038	16.999132	15.999	
	Oxygen-18	0.205	17.999160		
	Sulfur-32	94.99	31.972071		
Sulfur	Sulfur-33	0.75	32.971459	32.065	
Sullul	Sulfur-34	4.25	33.967867	32.003	
	Sulfur-36	0.01	35.967081		

Photo 3: Atomic Mass Calculations

(SAMPLE ANSWER BELOW)

$$O = 15.999 \text{ amu} = \frac{[(15.994915 \text{ amu x } 99.757 \%) + (16.999132 \text{ amu x } 0.038 \%) + (17.999160 \text{ amu x } 0.205 \%)]}{100\%}$$

 $S = 32.065 \text{ amu} = \frac{[(31.972071 \text{ amu x } 94.99 \%) + (32.971459 \text{ amu x } 0.75 \%) + (33.967867 \text{ amu x } 4.25 \%) + (35.967081 \text{ amu x } 0.01 \%)]}{100\%}$

Student Name

Exercise 2	
What is the difference between the atomic number and atomic weight of an element? Which of these values is used to order elements in the periodic table? Reference Photo 4 in your explanation.	
The atomic number of an element represents the number of protons in the nucleus of each atom, and the atomic weight of an element represents the size of the atom. Elements are ordered in the periodic table by their atomic numbers and shown in Photo 4.	
Are most elements solids, liquids, or gases at STP? Explain your answer by referencing the periodic table uploaded in Photo 5.	
Most of the 118 elements are solids at STP as illustrated in the shaded periodic table in Photo 5. Only the noble gases, hydrogen, chlorine, oxygen, fluorine, and nitrogen are gases. Only bromine and mercury are liquids at STP.	

What are alkaline earth metals? Which of the elements of Data Table 3 are included in this category?

Alkaline earth metals are silver-colored and soft, and have relatively low densities, melting points, and boiling points. In chemical terms, the alkaline earth metals react with the halogens to form the alkaline earth metal halides. Beryllium from Data Table 3 is an alkaline earth metal.

Photo 4: Subcategories of the Periodic Table (SAMPLE ANSWER BELOW)

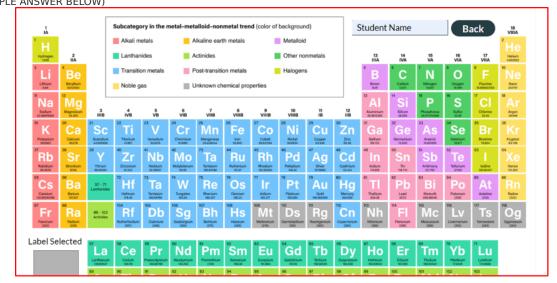
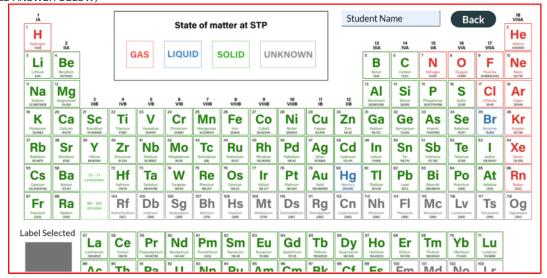



Photo 5: States of Matter on Periodic Table (SAMPLE ANSWER BELOW)

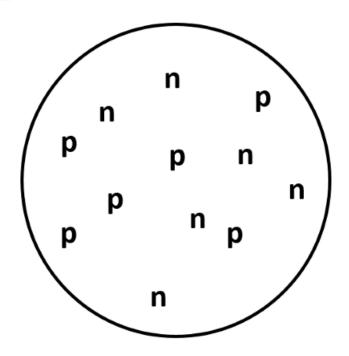
Data Table 3: Element Groups and Descriptions (SAMPLE ANSWER BELOW)

Element	Atomic Number	Group Number	Metal/ Nonmetal/ Metalloid	State of Matter	Atomic Weight
Neon	10	18	Nonmetal	Gas	20.1797
Bromine	35	17	Nonmetal	Liquid	79.904
Beryllium	4	2	Metal	Solid	9.0121831
Platinum	78	10	Metal	Solid	195.0844
Potassium	19	1	Metal	Solid	39.0983
Silicon	14	14	Metalloid	Solid	28.085
Sulfur	16	16	Nonmetal	Solid	32.06

Competency Review

The number of protons plus ____ of an atom is called the mass number.

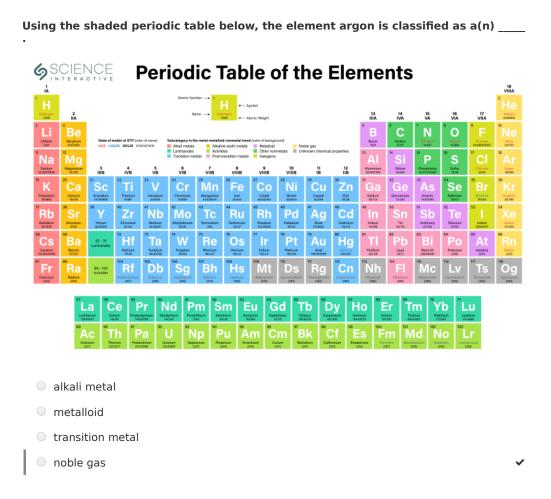
electrons
neutrons
isotopes
elements


Each element is composed of atoms with the same number of ____.

protons
neutrons
electrons
isotopes

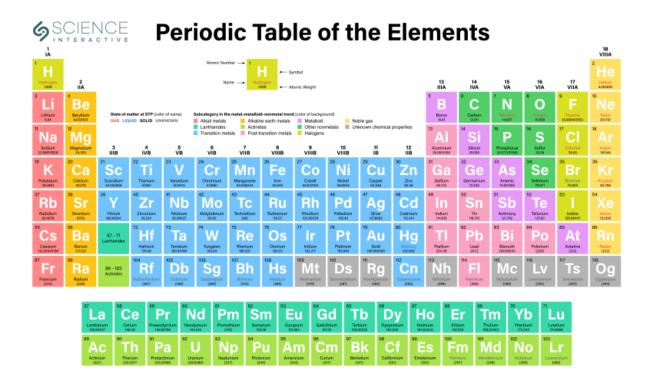
Atomic mass is a decimal number representing the mass of an atom.	
○ True	~
○ False	
Isotopes are forms of elements with differing numbers of	
○ protons	
electrons	
o neutrons	✓
atoms	
Newworks is and legated toward the control of the newledge table	
Nonmetals are located toward the of the periodic table.	
○ lower left	
O upper left	
o center	
upper right	✓

The carbon ____ isotope is represented by the diagram below.


- 0 11
- 0 12
- 0 13
- 0 14

The atomic mass of oxygen is calculated as $___$ amu when using the isotope mass and abundance data below.

Isotope	Abundance (%)	Mass (amu)
Oxygen 16	99.757	15.994915
Oxygen 17	0.038	16.999132
Oxygen 18	0.205	17.999160


- 0 15.999
 - 32.065
 - 99.757
 - 0 17.999

Extension Questions

Lithium naturally exists as two isotopes. Li-6 has an atomic mass of 6.015 amu and Li-7 has an atomic mass of 7.016 amu. Apply your knowledge of isotopes, atomic mass, and the periodic table to predict which isotope is most abundant and the physical appearance and properties of the isotope.

(SAMPLE ANSWER BELOW)

Li-7 would be more abundant because the mass of this isotope is closer to the listed mass for Li in the periodic table of 6.94 amu. Lithium is located in Group 1 of the periodic table and is classified as an alkali metal. For these reasons the isotope would be expected to appear as a shiny, soft, highly reactive metal at standard temperature and pressure and readily lose the outermost electron to form a cation with charge +1. It can also be cut easily with a knife due to softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture.

