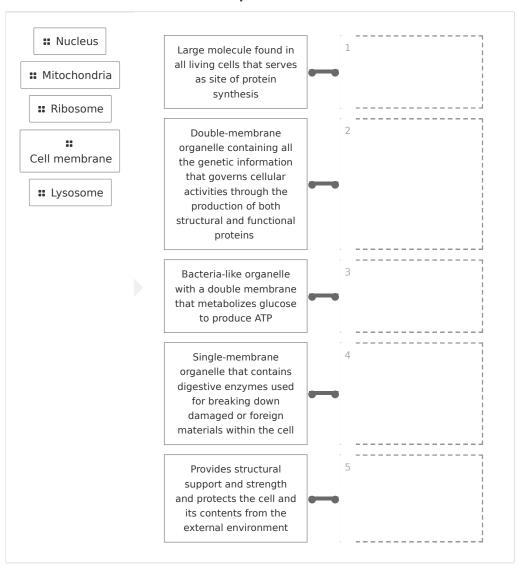
SI A&P - Full Discipline Demo - Fetal Pig

Cell Structure and Function

Final Report - Answer Guide

Institution Science Interactive University


Session SI A&P - Full Discipline Demo - Fetal Pig **Course** SI A&P - Full Discipline Demo - Fetal Pig

Instructor Sales SI Demo

Test Your Knowledge

Match each term to the best description.

Correct answers:

- 1 Ribosome 2 Nucleus 3 Mitochondria 4 Lysosome
- 5 Cell membrane

Categorize each statement as true or false.

The diffusion rate for essential molecules limits cell size because of the SA:V of the cell.

SA:V can be calculated by multiplying the surface area of the cell by the volume of the cell.

Small molecules can move through the cell cytoplasm via simple diffusion.

SA:V is directly related to the efficiency of diffusion through the cell.

Correct answers:

1

The diffusion rate for essential molecules limits cell size because of the SA:V of the cell.

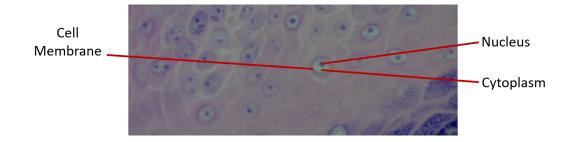
Small molecules can move through the cell cytoplasm via simple diffusion.

2

SA:V can be calculated by multiplying the surface area of the cell by the volume of the cell.

SA:V is directly related to the efficiency of diffusion through the cell.

Exploration


Eukaryotic cells can be differentiated from prokaryotic cells through the presence of membrane bound organelles and a nucleus.

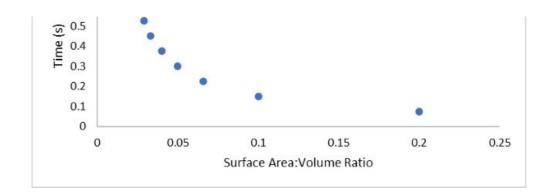
True			•
False			

The ribosome functions for	
digestion	
DNA replication	
mobility	
o protein synthesis	✓
The SA:V for a cell can be calculated by dividing the surface area by the volume.	
○ True	~
○ False	
What are the functions of each of the cellular structures labeled in Photo 1?	
	0 Word(s)
Was the labeled cell in Photo 1 eukaryotic or prokaryotic? Explain your answer by referencing the distinguishing structure(s) labeled in Photo 1.	/
	0 Word(s)
Photo 1: Skin Cell (SAMPLE ANSWER BELOW)	

(SAMPLE ANSWER BELOW)		
Slide	Total magnification	
Human Skin	600	

Exercise 2

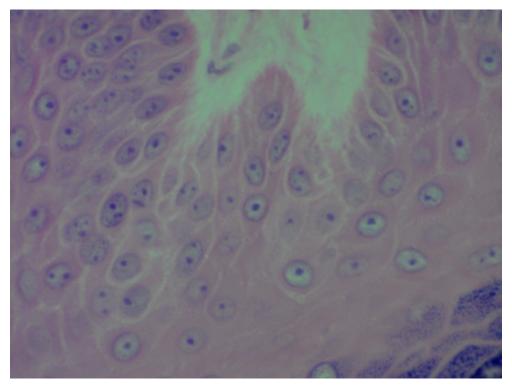
How did increasing the cell diameter affect the surface area to volume ratio?		
As the diameter increased, the surface area to volume ratio decreased.		
As the diameter increased, the surface area to volume ratio decreased.		
What impact did the change in surface area to volume ratio have on diffusion?		
0) Word(s)	
How does this experiment demonstrate the need for cells to maintain a smaller size?		
0) Word(s)	


Data Table 2: Surface Area and Volume in Relation to Cell Size (SAMPLE ANSWER BELOW)

Radius (µm)	Surface Area (µm²)	Volume (μm ³)	SA:V (μm ⁻¹)	Diffusion Time (s)
15	2827	14137	0.2	0.075
45	25447	382000	0.066	0.225
75	70686	1770000	0.04	0.375
105	139000	4850000	0.029	0.525
135	229000	10300000	0.022	0.675

Time to the center of the cell as a function of the surface area:volume ratio

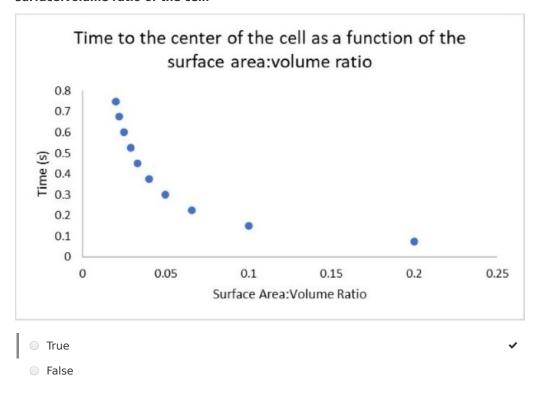
0.8 0.7 0.6


Competency Review

All human cells are eukaryotic.

molecules such as proteins and sugars.		
cytoskeleton		
cytosol	✓	
centrioles		
ribosomes		
are single-membraned organelles that store water and other small molecules.		
Centrioles		
Ribosomes		
 Mitochondria 		
Vacuoles	~	
Through simple diffusion, molecules move from areas of high concentrate to areas of low concentration.	tion	
○ True	✓	
False		
$4\pi r^2$ is used to calculate cell		
density		
mass		
surface area	✓	
volume		

___ is/are visible in the image of human skin cells below.



- Cell membranes
- Cytoplasm
- Nuclei
- All of the above

A cell has a surface area of 2827 μm^2 and a volume of 14137 $\mu m^{3.}$ The SA:V of the cell is ____ $\mu m^{\text{-}1}.$

- 0.2
- 5
- 0 11
- **17**

The graph below indicates that diffusion time is inversely related to the surface:volume ratio of the cell.

Extension Questions

Human cells vary in size from 30-4,000,000 μm^3 in volume. Apply your knowledge of cell structure and simple diffusion to predict which cell type in the table below would have the fastest diffusion rate for water molecules to the center of the cell. Explain your prediction by referencing the relationship between cell size and diffusion rate.

Cell Type	Average Volume (μm³)
Sperm cell	30
Red blood cell	100
Neutrophil	300
Beta cell	1,000
Fibroblast	2,000
Osteoblast	4,000
Megakaryocyte	30,000
Fat cell	600,000
Oocyte	4,000,000

(SAMPLE ANSWER BELOW)

The sperm cell would have the fastest diffusion rate for water molecules to the center of the cell because the sperm cell has the smallest volume and simple diffusion rates are inversely related to cell size.

